matlab是如何进行傅里叶变换的?采用什么方法进行积分运算?

傅里叶变换的原理及matlab实现


傅里叶变换的原理及matlab实现 课程名称: 数字图像处理 学 院: 信息工程与自动化学院 专 业: 计算机科学与技术 年 级: 09级 学生姓名: 111 指导教师: 1111 日 期: 教 务 处 制 一、傅立叶变化的原理; 2 (1)原理 2 (2)计算方法 2 二、傅立叶变换的应用; 3 (1)、频谱分析 3 (2)、数据压缩 3 (3)、OFDM 3 三、傅里叶变换的本质; 3 四、实验内容; 7 五、傅立叶变换方法; 7 六、 实验结果及分析; 7 七、傅立叶变换的意义; 8 (1)、傅立叶变换的物理意义 8 (2)、图像傅立叶变换的物理意义 9 八、总结; 10 九.附录; 10 一、傅立叶变化的原理; (1)原理 正交级数的展开是其理论基础!将一个在时域收敛的函数展开成一系列不同频率谐波的叠加,从而达到解决周期函数问题的目的。在此基础上进行推广,从而可以对一个非周期函数进行时频变换。 从分析的角度看,他是用简单的函数去逼近(或代替)复杂函数,从几何的角度看,它是以一族正交函数为基向量,将函数空间进行正交分解,相应的系数即为坐标。从变幻的角度的看,他建立了周期函数与序列之间的对应关系;而从物理意义上看,他将信号分解为一些列的简谐波的复合,从而建立了频谱理论。 当然Fourier积分建立在傅氏积分基础上,一个函数除了要满足狄氏条件外,一般来说还要在积分域上绝对可积,才有古典意义下的傅氏变换。引入衰减因子e^(-st),从而有了Laplace变换。(好像走远了)。 这是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。 连续傅里叶变换的逆变换 (inverse Fourier transform)为 即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。 一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅里叶变换对(transform pair)。 二、傅立叶变换的应用; DFT在诸多多领域中有着重要应用,下面仅是颉取的几个例子。需要指出的是,所有DFT的实际应用都依赖于计算离散傅里叶变换及其逆变换的快速算法,即快速傅里叶变换(快速傅里叶变换(即FFT)是计算离散傅里叶变换及其逆变换的快速算法。)。 (1)、频谱分析 DFT是连续傅里叶变换的近似。因此可以对连续信号x(t)均匀采样并截断以得到有限长的离散序列,对这一序列作离散傅里叶变换,可以分析连续信号x(t)频谱的性质。前面还提到DFT应用于频谱分析需要注意的两个问题:即采样可能导致信号混叠和截断信号引起的频谱泄漏。可以通过选择适当的采样频率(见奈奎斯特频率)消减混叠。选择适当的序列长度并加窗可以抑制频谱泄漏。 (2)、数据压缩 由于人类感官的分辨能力存在极限,因此很多有损压缩算法利用这一点将语音、音频、图像、视频等信号的高频部分除去。高频信号对应于信号的细节,滤除高频信号可以在人类感官可以接受的范围内获得很高的压缩比。这一去除高频分量的处理就是通过离散傅里叶变换完成的。将时域或空域的信号转换到频域,仅储存或传输较低频率上的系数,在解压缩端采用逆变换即可重建信号。 (3)、OFDM OFDM(正交频分复用)在宽带无线通信中有重要的应用。这种技术将带宽为N个等间隔的子载波,可以证明这些子载波相互正交。尤其重要的是,OFDM调制可以由IDFT实现,而解调可以由DFT实现。OFDM还利用DFT的移位性质,在每个帧头部加上循环前缀(Cyclic Prefix),使得只要信道延时小于循环前缀的长度,就能消除信道延时对传输的影响。 三、傅里叶变换的本质; 傅里叶变换的公式为 可以把傅里叶变换也成另外一种形式: 可以看出,傅里叶变换的本质是内积,三角函数是完备的正交函数集,不同频率的三角函数的之间的内积为0,只有频率相等的三角函数做内积时,才不为0。 下面从公式解释下傅里叶变换的意义 因为傅里叶变换的本质是内积,所以f(t)和求内积的时候,只有f(t)中频率为的分量才会有内积的结果,其余分量的内积为0。可以理解为f(t)在上的投影,积分值是时间从负无穷到正无穷的积分,就是把信号每个时间在的分量叠加起来,可以理解为f(t)在上的投影的叠加,叠加的结果就是频率为的分量,也就形成了频谱。 傅里

}

我要回帖

更多关于 如何用matlab求傅里叶变换 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信