二战螺旋桨飞机原理转变方向是靠调整尾翼来转向的吗?就是跟船类似。调整尾舵一样?是改变尾翼的方向吗?

感谢评语:
本页链接:
第1个回答:
匿名网友可以在天上飞.
第2个回答:
匿名网友飞行原理简介(一)&要了解飞机的飞行原理就必须先知道飞机的组成以及功用,飞机的升力是如何**生的等问题。这些问题将分成几个部分简要讲解。&  一、飞行的主要组成部分及功用&到目前为止,除了少数特殊形式的飞机外,大多数飞机都由机翼、机身、尾翼、起落装置和动力装置五个主要部分组成 :&1. 机翼——机翼的主要功用是**生升力,以支持飞机在空中飞行,同什起到一定的稳定和操作作用。在机翼上一般安装有疙和襟翼,操纵疙可噬机滚转,放下襟翼可使升力增大。机翼上还可安装发动机、起落架和油箱等。不同用途的飞机其机翼形状、大小也各有不同。&2. 机身——机身的主要功用是装载乘员、旅客、**、货物和各种设备,将飞机的其他部件如:机翼、尾翼及发动机等连接成一个整体。&3. 尾翼——尾翼包括水平尾翼和垂直尾翼。水平尾翼由固定的水平安定面和可动的升芥组成,有的高速飞机将水平安定面和升芥合为一体成为全动平尾。垂直尾翼包括固定的垂直安定面和可动的方向舵。尾翼的作用是操纵飞机俯仰和偏转,保飞机能平稳飞行。&4.起落装置——飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支撑飞机。&5. 动力装置——动力装置主要用来**生拉力和推力,噬机前进。其次还可为飞机上的其他用电设备提供电源等。现在飞机动力装置应用较广泛的有:航空活塞式发动机加螺旋桨推进器、涡轮喷气发动机、涡轮螺旋桨发动机和涡轮风扇发动机。除了发动机本身,动力装置还包括一系列保发动机正常工作的系统。&飞机上除了这五个主要部分外,根据飞机操作和执行任务的需要,还装有各种仪表、通讯设备、领航设备、安全设备等其他设备。& 二、飞机的升力和阻力&飞机是重于空气的飞行器,当飞机飞行在空中,就会**生作用于飞机的空气动力,飞机就是靠空气动力升空飞行的。在了解飞机升力和阻力的**生之前,我们还要认识空气流动的特性,即空气流动的基本规律。流动的空气就是气流,一种流体,这里我们要引用两个流体定理:连续性定理和伯努利定理&流体的连续性定理:当流体连续不断而稳定地流过一个粗细不等的管道时,由于管道中任何一部分的流体都不能中断或挤压起来,因此在同一时间内,流进任一切面的流体的质量和从另一切面流出的流体质量是相等的。&连续性定理阐述了流体在流动中流速和管道切面之间的关系。流体在流动中,不仅流速和管道切面相互联系,而且流速和压力之间也相互联系。伯努利定理就是要阐述流体流动在流动中流速和压力之间的关系。&伯努利定理基本内容:流体在一个管道中流动时,流速大的地方压力小,流速小的地方压力大。&飞机的升力绝大部分是由机翼**生,尾翼通常**生负升力,飞机其他部分**生的升力很小,一般不考虑。从上图我们可以看到:空气流到机翼前缘,分成上、下两股气流,分别沿机翼上、下表面流过,在机翼后缘重新汇合向后流去。机翼上表面比较凸出,流管较细,说明流速加快,压力降低。而机翼下表面,气流受阻挡作用,流管变粗,流速减慢,压力增大。这里我们就引用到了上述两个定理。于是机翼上、下表面出现了压力差,垂直于相对气流方向的压力差的总和就是机翼的升力。这样重于空气的飞机借助机翼上获得的升力克服自身因地球引力形成的重力,从而翱翔在蓝天上了。&机翼升力的**生主要靠上表面吸力的作用,而不是靠下表面正压力的作用,一般机翼上表面形成的吸力占总升力的60-80%左右,下表面的正压形成的升力只占总升力的20-40%左右。&飞机飞行在空气中会有各种阻力,阻力是与飞机运动方向相反的空气动力,它阻碍飞机的前进,这里我们也需要对它有所了解。按阻力**生的原因可分为摩擦阻力、**钭枇Α⒂盏甲枇透扇抛枇Α&1. 摩擦阻力——空气的物理特性之一就是粘性。当空气流过飞机表面时,由于粘性,空气同飞机表面发生摩擦,**生一个阻稚机前进的力,这个力就是摩擦阻力。摩擦阻力的大小,决定于空气的粘性,飞机的表面状况,以及同空气相接触的飞机表面积。空气粘性越大、飞机表面越粗糙、飞机表面积越大,摩擦阻力就越大。&2.**钭枇Α嗽谀娣缰行凶岣械阶枇Φ淖饔茫饩褪且恢盅**钭枇ΑU庵钟汕昂笱沽Σ钚纬傻淖枇醒**钭枇Α7苫幕怼⑽惨淼炔考都会**生**钭枇Α&3.诱导阻力——升力**生的同时还对飞机附加了一种阻力。这种因**生升力而诱导出来的阻力称为诱导阻力,是飞机为**生升力而付出的一种“代价”。其**生的过程较复杂这里就不在详诉。&4.干扰阻力——它是飞机各部分之间因气流相互干扰而**生的一种额外阻力。这种阻力容易**生在机身和机翼、机身和尾翼、机翼和发动机短舱、机翼和副油箱之间。&以上四种阻力是对低速飞机而言,至于高速飞机,除了也有这些阻力外,还会**生波阻等其他阻力。&  三、影响升力和阻力的因素&升力和阻力是飞机在空气之间的相对运动中(相对气流)中**生的。影响升力和阻力的基本因素有:机翼在气流中的相对位置(迎角)、气流的速度和空气密度以及飞机本身的特点(飞机表面质量、机翼形状、机翼面积、是否使用襟翼和前缘翼缝是否张开等)。&1. 迎角对升力和阻力的影响——相对气流方向与翼弦所夹的角度叫迎角。在飞行速度等其它条件相同的情况下,得到最大升力的迎角,叫做临界迎角。在小于临界迎角范围内增大迎角,升力增大:超过临界临界迎角后,再增大迎角,升力反而减小。迎角增大,阻力也越大,迎角越大,阻力增加越多:超过临界迎角,阻力急剧增大。&2.飞行速度和空气密度对升力阻力的影响——飞行速度越大升力、阻力越大。升力、阻力与飞行速度的平方成正比例,即速度增大到原来的两倍,升力和阻力增大到原来的四倍:速度增大到原来的三倍,胜利和阻力也会增大到原来的九倍。空气密度大,空气动力大,升力和阻力自然也大。空气密度增大为原来的两倍,升力和阻力也增大为原来的两倍,即升力和阻力与空气密度成正比例。&3,机翼面积,形状和表面质量对升力、阻力的影响——机翼面积大,升力大,阻力也大。升力和阻力都与机翼面积的大小成正比例。机翼形状对升力、阻力有很大影响,从机翼切面形状的相对厚度、最大厚度位置、机翼平面形状、襟翼和前缘翼缝的位置到机翼结都对升力、阻力影响较大。还有飞机表面光滑与否对摩擦阻力也会有影响,飞机表面相对光滑,阻力相对也会较小,反之则大。&飞机能自由地飞行在空中,靠的是飞行员对飞机正确的操控。飞行员操作飞机,就是运用油门、杆、舵改变飞机的空气动力和力矩,从而改变飞行状态。为了解飞机的操作原理我们就需要知道飞机的平衡、安定性和操作性等相关知识。下面从这三方面开始简要讲解飞机的飞行操作原理。&为了让大家理解其中的术语,我们先介绍一些基础知识:飞机的重心和飞机的坐标轴。&飞机的重心:飞机的各部件燃料、乘员、货物等重力之和是飞机的重力,飞机重力的着力点叫做飞机重心。&飞机的坐标轴也叫机体轴是以机体为基准,通过飞机重心的三条相互垂直的坐标轴。&  一、飞机的平衡、安定性和操作性&(一).飞机的平衡是指作用于飞机的各力之和为零,各力重心所构成的各力矩之和也为零。飞机处于平衡状态时,飞机速度的大小和方向都保持不变,也不绕重心转动。飞机的平衡包括俯仰平衡、方向平衡和横侧平衡。&①飞机的俯仰平衡是指作用于飞机的各俯仰力矩之和为零。飞机取得平衡后,不绕纵轴转动,迎角保持不变。作用于飞机的俯仰力矩很多,主要有:机翼力矩、水平尾翼力矩及拉力(推力)力矩。&影响俯仰平衡的因素:加减油门,收放襟翼、收放起落架和重心变化等。飞行中,影响飞机俯仰的因素是经常存在的。为了保持飞机的俯仰平衡,飞行员可前后移动驾驶杆偏转升芥或使用调整片,**生操纵力矩,来保持力矩的平衡。&②飞机的方向平衡是作用于飞机的各偏转力矩之和为零。飞机取得方向平衡后,不绕立轴转动,侧滑角不变或没有侧滑角。&影响飞机方向平衡的因素:飞机一边机翼变形,左右两翼阻力不等;多发动机飞机,左右两边发动机工作状态不同,或者一边发动机停车,从而**生不对称拉力;螺旋桨发动机,油门改变,螺旋桨滑流引起的垂直尾翼力矩随之改变。飞机的方向平衡受破坏时最有效的克服方法就是适当蹬舵或使用方向舵调整片,利用偏转方向舵**生的方向操纵力矩来平衡使机头偏转的力矩,从而保持飞机的方向平衡。&③飞机的横侧平衡是作用于飞机的各滚转力矩之和为零。飞机取得横侧平衡后,不绕纵轴滚转,坡度不变或没有坡度。作用于飞机的滚转力矩,主要有两翼升力对重心形成的力矩:螺旋桨旋转时的反作用力矩。&影响飞机的横侧平衡:飞机一边机翼变形,两翼升力不等;螺旋桨发动机,油门改变,螺旋桨反作用力矩随之改变;重心左右移动(如两翼油箱耗油量不等),两翼升力作用点至重心的力臂改变,形成附加滚转力矩。飞机的横侧平衡受破坏时,飞行员保持平衡最有效的方法就是适当左右压驾驶杆或使用疙调整片,利用偏转疙**生的横侧操纵力矩来平衡噬机滚转的力矩,以保持飞机的横侧平衡。飞机的方向平衡和横侧平衡是相互联系、相互依赖的,方向平衡受到破坏,如不修正就会引起横侧平衡的破坏。&(二).飞机的安定性就是飞行中,当飞机受微小扰动(如阵风、发动机工作不均衡、舵面的偶尔偏转等)而偏离原来的平衡状态,并在扰动消失后,不经飞行员操纵,飞机自动恢复原来平衡状态的特性。飞机的安定性包括:俯仰安定性、方向安定性和横侧安定性。&飞机安定性的的强弱,一般由摆动衰减时间、摆动幅度、摆动次数来衡量。当飞机受到扰动后,恢复原来平衡状态时间越短,摆动幅度越小,摆动次数越少,飞机的安定性就越强。&飞机安定性的强弱,主要取决于飞机的重心位置、飞行速度、飞行高度和迎角的变化。&(三).飞机除应有必要的安定性外,还应有良好的操作性,这样才能保飞行员有意识的飞行。&飞机的操作性是只指飞机在飞行员操纵升芥、方向舵和疙下改变其飞行状态的特性。操纵动作简单、省力,飞机反应快,操作性就好,反之则不。飞机的操纵性同样包括俯仰操纵性、方向操纵性和横侧操纵性。&① 飞机的俯仰操纵性是飞行员操纵驾驶杆使升芥偏转之后,飞机绕横轴转动而改变迎角等飞行状态的特性。在直线飞行中,飞行员向后拉驾驶杆,升芥向上偏转一个角度,在水平尾翼上**生向下的附升力,对飞机重心形成俯仰操作力矩,迫使机头上仰,迎角增大。驾驶杆前后的每个位置对应着一个迎角或飞行速度。&飞行中,升芥偏转角越大,气流动力越大,升芥上的空气动力也越大,从而枢轴力矩也越大,所需杆力(飞行员操纵驾驶杆所施加的力)也越大。在模拟飞行中,如果使用微软的力回馈摇杆这种力可以体验到。&②飞机的方向操纵性,就是在飞行员操纵方向舵后,飞机绕立轴偏转而改变其侧滑角等飞行特性。与俯仰角相似,在直线飞行中,每一个脚蹬位置,对应着一个侧滑角,蹬右舵,飞机**生左侧滑;蹬左舵,飞机**生右侧滑。&方向舵偏转后,同样**生方向舵枢轴力矩,飞行员需要用力蹬舵才能保持方向舵偏转角不变。方向舵偏转角越大,气动动压越大,蹬舵力越大。&③ 飞机的横侧操纵性是指在飞行员操纵疙后,飞机绕纵轴滚转而改变滚转角速度、坡度等飞行状态的特性。比如:飞行员向左压驾驶盘,右疙下偏,右翼升力增大,左疙上偏,左翼升力减小,两翼升力之差,形成横侧操纵力矩,噬机向左加速滚转。在横侧操纵中,驾驶盘左右转动的每一个位置,都对应着一个滚转角速度。驾驶盘左右转动的角度越大,滚转角速度越大。如果飞行元想保持一定的坡度,就必须在接近预定坡度时将盘回到中立位置,消除横侧操纵力矩,在横侧阻转力矩的阻止下,使滚转角速度消失。有时,飞行员甚至可以向飞机滚转的反方向压一点驾驶盘,迅速制稚机滚转,噬机准确地达到预定飞行坡度。&飞机的操纵性不是一成不变的,它要受到许多因素的制约,影响飞机操纵性的因素有飞机重心位置的前后移动、飞行的速度、飞行高度、迎角等。 飞行原理简介(三)&这部分我们要了解飞机最简单的运动形式:平飞、上升和下降。&平飞、上升和下降指的是飞机既不带倾胁不带侧滑的等速直线飞行。这也是飞机最基本的飞行状态。飞机平飞、上升和下降性能是飞机最基本的飞行性能,如:平飞最大速度、平飞最小速度、最大上升角、最大上升率,升限、最小下降角、最大下降距离等,这些都是飞行员首先要学习和掌握的。&追答 : 一. 平飞
飞机作等速直线水平的飞行,叫平飞。平飞中作用于飞机的外力有升力、重力、拉力(或推力)和阻力。平飞时,飞机无转动,各力对重心的力矩相互平衡,且上述各力均通过飞机重心。为保持平飞,需要有足够的升力以平衡飞机的重量,为了**生这一升力所需的飞行速度,叫平飞所需速度影响平飞所需速度的因素:
飞机重量 在其它因素都不变的条件下,飞机重量越重,为保持平飞所需的升力 就越大,故平飞所需速度也越大。相反,飞机重量越轻,平飞所需速度就越小。
机翼面积 机翼面积大,升力也大。为了获得同样大的升力以平衡飞机重量,所需平飞速度就小。反之,机翼面积小,平飞所需速度就大。
空气密度空气密度小,升力也小,为了获得同样大的升力以平衡飞机重量,平飞所需速度就增大。反之,空气密度大,平飞所需速度就减小,空气密度的大小是随飞行高度以及该高度的气温气压而变化的,飞行高度升脯或在同一高度上,气温升高或气压降低,空气密度都会减小。反之增大。
升力系数 升力系数大,平飞所需速度就小。因为,升力系数大,升力大,只需较小的速度就能获得平衡飞机重量的升力。反之,升力系数小,平飞所需速度就大。
而升力系数的大小又决定于飞机迎角的大小和增升装置的使用情况。迎角不同,开力系数不同,平飞所需速度也就不同。在小于临界迎角的范围内,用大迎角平飞,升力系数大,平飞所需速度就小,用小迎角平飞,升力系数小,平飞所需速度就大,即是 说,平飞中每一个迎角均有一个与之对应的平飞所需速度。
增升装置的使用情况不同,升力系数大小也不同,平飞所需速度也将下一样。(比 如放襟翼起飞,由于升力系数大,为平衡飞机重量所需的速度就小,即离地速度小,起飞滑跑距离就短)。
1. 最大平飞速度,在一定的高度和重量下,发动机加满油门时,飞机所能达到的稳定平飞速度,就是飞机在该高度上的最大平飞速度。平飞最大速度是理论上飞机平飞所能达到的最大速度,而并不是飞机实际的最大使用速度,由于飞机强度等限制,最大使用速度比平飞最大速度可能要小。比如三叉戟飞机,在海平面,标准大气,全收状态下,平飞最大速度为480海里/小时,而最大使用速度则规定为365海里/小时。
2. 平飞最小速度,是飞机作等速平飞所能保持的最小速度。如有足够的可用拉力或可用功率,那么平飞最小速度的大小受最大升力系数的限制。因为临界迎角的升力系数最大, 所以与临界迎角相对应的平飞速度(失速速度),就是平飞最小速度。 对飞机的要求来说,平飞最小速度越小越好,因平飞最小速度越小,飞机就可用更 小的速度接地,以改善飞机的着陆性能。临界迎角对应的平飞速度,是平飞的最小理论速度。实际上当飞机接近临界迎角时,由于机翼上气流严重分离,飞机出现强烈抖动,飞机不仅易失速而且安定性、操纵性都差。所以实际上要以该速度平飞是不可能的。为保安全,对飞行迎角的使用应留有一定的余量,不允许在临界迎角状态飞行。
3. 平飞有利速度就是以有利迎角保持平飞的速度。以有利速度平飞,升阻比最大平飞阻力最小,航程较远。
4. 经济速度就是用最小所需功率作水平飞行时的速度。用经济速度平飞所需功率最小,即所用发动机的功率最小,比较省油,航时较长。与经济速度相对应的迎角,叫经济迎角。
在平飞中改变速度的基本操纵方法是:要增大平飞速度,必须加大油门,并随着速度的增大而前推驾驶杆;同理,要减小平飞速度则必须收个油门,并随着速度的减小而后拉驾驶杆。也就是说,从一个平飞状态改变到另一个乎飞状态,必须同时操纵油门和驾驶杆。此外,对螺旋桨飞机正必顶要修正因加减油门而引起的螺旋桨副作用的影响。但是必须指出,上述改变平飞速度的操纵规律只有在大于经济速度的范围内才适合。
飞机沿向上倾斜的轨迹所作的等速直线飞行就叫上升。上升是飞机取得高度的基本方法。上升中作用于飞机的外力和平飞相同,有升力、重力、拉力(或推力)和阻力。
飞机的上升性能主要包括最大上升角、最大上升率、上升时间和上升限度。
1.上升角和上升梯度
上升角是飞机上升轨迹与水平线之间的夹角。上升角越大,说明经过同样的水平距离后,上升的高度越高。上升高度与水平距离的比值,就是上升梯度。飞机的剩余拉力(或剩余推力)越大,或飞机重量越轻,则上升角和上升梯度越大。
2. 上升率和最快上升速度
在上升中,飞机每秒钟所上升的高度,叫上升率,也叫上升垂直速度,上升率越大,表明飞机上升到一定高度所需的时间越短,飞机就能迅速取得高度。所以说,飞机的最大上升率是飞机重要的飞行性能之一。 剩余功率越大,或飞机重量越轻功率越大。因为飞机上升的过程,实际就是将剩余功率变成势能的过程。在飞机重量不变的情况下,剩余功率越大,飞机在单位时间内增加的势能就越多,上升率也就越大。在剩余功率一定的情况下,飞机重量越轻,在单位时间内上升的高度越高、上升率也就越大。在重量一定的情况下升率的大小主要决定于剩余功率的大小,而剩余功率的大小又决定于油门位置和上升速度。在油门位置一定的情况下,用不同速度上升,由于剩余功率大小不同,上升率大小也就不同。对低速螺旋桨飞机,加满油门,在有利速度附近,剩余功率最大,所以用近似有利速度的速度上升,可以得到最大的上升率。
3. 上升时间和上升限度
上升率的变化决定于剩余功率的变化。所以,上升率随飞行高度的变化,也就决定于剩余功率随飞行高度的变化。就可以确定出飞机在各个飞行高度上的最大上升率以及最快上升速度。在额定高度以上,随着高度的升脯发动机发出的功率减小,可用功率减小,剩余功率随之减小。所以,最大上升率随着高度的升高一直减小。 既然最大上升率随高度的增加要一直减小,那么上升到一定高度,上升率势必要减小到零。这时飞机不可能再继续上升。上升率等于零的高度叫做理论上 升限度,简称理论升限。
飞机上升到预定高度所需的最短时间,叫上升时间。
飞机由平飞转入上升的基本操纵方法是:加大油门到预**置,同时柔 和后拉驾驶杆,噬机逐渐转入上升,及至接近预定上升角(上升率)时,即前推驾驶杆,以便噬机稳定在预定的上升角。必要时,调整油门.以保持预定的上升速度。对螺旋桨飞机,还应注意修正螺旋桨副作用的影响。飞机由上升转入平飞,飞行员就应前推驾驶杆,减小迎角,以减小升力。只有升力小于重力第一分力,飞机**生向下的向心力之后,飞机运动轨迹才会向下弯曲,才可能转入平飞。
飞机由上升转入平飞的基本操纵方法是:柔和地前推驾驶 杆减小升力,同时收小油门,噬机逐渐转入平飞,待上升角接近零时,即后拉驾驶盘保持平飞。必要时调整油门,以保持等速平飞,对螺旋桨飞机,还应注意修正螺旋桨副作用的影响。
飞机沿向下倾斜的轨迹所作的等速直线飞行就叫下降。下降是飞机降低高度的基本方法。下降中作用于飞机的外力和平飞相同,有升力、重力、拉力(或推力)和阻力。飞机的下降根据需要可用正拉力、零拉力或负拉力进行。拉力近似于零(闭油门)的下降叫下滑。
飞机的下降性能主要包括最小下降角、最小下降率和最大下降距离。
1. 下降角和下降率
下降轨迹与水平线之间的夹角叫下降角。飞机每秒钟所降低的高度叫下降率。下降率越大,飞机降低高度越快,下降到一定高度的时间就短。
2. 下降距离
飞机下降一定高度所通过的水平距离,叫下降距离。下降距离的长短,取决于下降高度和下降角。下降高度越脯下降角越小,下降距离就越长。以有利迎角下降,因升阻比最大,下降角最小,故下降距离最长。能获得最大下降距离的下降速度,叫做最大下降距离下降速度。对零拉 力下滑时,最大下滑距离速度就等于有利速度。凡是使升阻比减小,下降角增大的因素都将使下降距离缩短。如在放起落架、襟翼,飞机结等情况下,升阻比减小,下降角增大,下降距离缩短,飞机用负拉力下降 时,下降角增大,下降距离缩短。飞行中常可根据滑翔比的大小来估计下降距离的长短。滑翔比是下降距离与下降高度之比。滑翔比就是飞机每降低一米高度所前进的距离。在高度一定的情况下,滑翔比越大,下降距离就越长。在无风和零拉力的情况下,滑翔比就等于飞机的升阻比。
下降的操纵原理
操纵驾驶杆改变下降角。下降速度、下降率以及下降距离在稳定的下降中,一个迎角对应一个下降速度。移动驾驶杆改变迎角,就可相应地改变下降速度、下降角、下降率以及下降距离。在下降第一范围内,后位驾驶杆,迎角 增大,升力系数增大,下降速度减小,下降角减小,下降率减小,下降距离增长,反之,前推驾驶盘,下降速度增大,下降角、下降率增大,下降距离缩短,用有利迎角下 降,下降角最个,下降距离最远。用经济迎角下降,下降率最小。下降中,主要是操纵驾驶盘和油门,保持好下降速度和下降角。只要油门在规** 置,操纵驾驶杆保持好规定的下降速度,就可以获得预定的下降角。
加、减油门改变下降角、下降距离。下降中,不动驾驶盘,即迎角保持下变,加油门可使下降角减小,下降速度稍增 大,下降距离增长,减油门可使下降角增大,  下降速度稍减小,下降距离缩短。 加油门,拉力增大,下降速度增大,升、阻力增大。
飞机由平飞转入下降的基本操纵方法一般是:柔和前推驾驶盘,以减小迎 角,噬机逐渐转入下降,同时收小油门,减小拉力。待飞机接近预定的下降角(下 降率)时,应及时后拉驾驶盘,保持好预定的下降角下降。
飞机由下滑转平飞的基本操纵方法是:加大油门至平飞位置,同时柔和地后拉驾驶盘以减小下降角,待飞机接**飞状态时,应向前回盘,保持平飞。 飞行原理简介(四)
飞机的每次飞行,不论飞什么课目,也不论飞多高、飞多久,总是以起飞开始以着陆结束。 起飞和着陆是每次飞行中的两个重要环节。所以,我们首先需要掌握好起飞和着陆的技术。追答 : 一. 滑行
飞机不超过规定的速度,在地面所作的直线或曲线运动叫滑行。
对滑行的基本要求是:飞机平稳地开始滑行,滑行中保持好速度和方向,并噬机能停止在预定的位置。飞机从静止开始移动,拉力或推力必须大于最大静摩擦力,故飞机开始滑行时应适 当加大油门。飞机开始移动后,摩擦力减小,则应酌量减小油门,以防加速太快,保持起滑平稳。滑行中,如果要增大滑行速度,应柔和加大油门,使拉力或推力大于摩擦力,**生加速度,使速度增大,要减小滑行速度,则应收小油门,必要时,可使用刹车。
飞机从开始滑跑到离开地面,并升到一定高度的运动过程,叫做起飞。
飞机起飞的操纵原理
飞机从地面滑跑到离地升空,是由于升力不断增大,直到大于飞机重力的结果。而 只有当飞机速度增大到一定时,才可能**生足以支持飞机重力的升力。可见飞机的起飞是一个速度不断增加的加速过程。 ; 剩余拉力较小的活塞式螺旋桨飞机的起飞过程,一般可分为起飞滑跑、离地、小角度上升(或一段平飞)、上升四个阶段。 对有足够剩余拉力的螺旋桨飞机,或有足够剩余推力的喷气式飞机,因可噬机加速并上升,故起飞一般只分三个阶段,即起滑跑、离地和上升。
(一)起飞滑跑的目的是为了增大飞机的速度,直到获得离地速度。拉力或推力愈大,剩余拉力或剩余推力也愈大,飞机增速就愈快。起飞中,为尽快地增速,应把油门推到最大位置。
1.抬前轮或抬尾轮
前三点飞机为什么要抬前轮?
前三点飞机的停机角比较小,如果在整个起飞滑跑阶段都保持三点姿态滑跑,则迎角和升力系数较小,必然要将速度增大到很大才能**生足够的升力噬机离地,这样,滑咆距离势必很长。因此,为了减小离地速度,缩短滑跑距离,当速度增大到一定程度时就需要抬起前轮作两点姿态滑跑,以增大迎角和升力系数。
抬前轮的时机和高度
抬前轮的时机不宜过早或过晚。抬前轮过早,速度还小,升力和阻力都小,形成的上仰力矩也小。要拾起前轮,必须使水平尾翼**生较大的上仰力矩,但在小速度情况下,水平尾翼**生的附加空气动力也小,要**主足够的上仰力矩就需要多拉杆。结果,随着滑跑速度增大,上仰力矩又将迅速增大,飞行元保持抬前伦的平衡状态,势必又要用较大的操纵量进行往复修正,给操纵带来困难。同时,抬前轮过旱,噬机阻力增大而增长起飞距离。如果抬前轮过晚,不仅使滑跑距离增长,而且还由于拉杆抬前轮到离地的时间很短,飞行员不易修正前轮抬起的高度而保持适当的离地迎角。甚至容易使升力突增很多 而造成飞机猛然离地。各型飞机抬前轮的速度均有其具体规定。前轮抬起高度应正好保持飞机离地所需的迎角,前轮抬起过低,势必使迎角和升力系数过小,离地速度增大,滑跑距离增长,前轮抬起过脯滑跑距离虽可缩短,但因飞机阻力大,起飞距离将增长,而且迎角和升力系数过大,又势必造成大迎角小速度离地,离地后,飞机的安定住差操纵性也不好。仰烬大,还可能造成机尾擦地。从既要保安全又要缩短滑跑距离的要求出发,各型飞机前轮抬起高度都有其具体规定。飞行员可从飞机上的俯仰指示器或从机头与天地线的关系位置来判断前轮抬起的高度是否适当。
后三点飞机为什么要抬尾轮
后三点飞机与前三点飞机相比,停机角比较大,因此三点滑跑中迎角较大,接近其临界迎角,如果整个滑跑阶段都保持三点滑跑,升力系数比较大,飞机在较小的速度下 即能**生足够的升力噬机离地。此时滑跑距离虽然很短,但大迎角小速度离地后,飞机安定性操纵性都差,甚至可能失速。因此后三点飞机,当滑跑速度增大到一定时,飞行员应前推驾驶杆,抬起机尾作两点滑跑,以减小迎角。与前三点飞机抬前轮一样,为了既保安全,又缩短滑跑距离,必须适时正确地抬机尾。抬机尾过早或过晚,过高或过低,不仅会增长滑跑距离,起飞距离,而且会危及 飞行安全。各型飞机抬机尾的速度和高度也都有其具体规定。 2. 保持滑跑方向
对螺旋桨飞机而言,起飞滑跑中引起飞机偏转的主要原因是螺旋桨的副作用。起飞滑跑中,螺旋桨的反作用力矩力图噬机向螺旋桨旋转的反方向倾斜,造成两主轮对地面的作用力不等,从而使两主轮的摩擦力不等,两主轮摩擦力之差对重心形成偏转力矩。螺旋桨滑流作用在垂直尾翼上也**主偏转力矩。前三点飞机抬前轮时和后三点飞机抬尾轮时,螺旋桨的进动作用也会噬机**生偏转。加减油门和推拉笃驶杆的动作愈粗猛,螺旋桨副作用影响愈大。为减轻螺旋桨副作用的影响,加油门和推拉驾驶杆的动作应柔和适当。滑跑前段,因舵的效用差,一般可用偏转前轮和刹车的方法来保持滑跑方向。滑跑后段应用舵来保持滑跑方向。随着滑跑速度的不断增大,方向舵的效用不断提脯就应当回舵,以保持滑跑方向。
喷气飞机起飞滑跑方向容易保持,其原因是;一是喷气飞机都是前三点飞机, 而前三点飞机在滑跑中具有较好的方向安定住,二是没有螺旋桨副作用的影响,所以在加油门和抬前轮时,飞机不会**主偏转。
(二) 当速度增大到一定,升力稍大于重力,飞机即可离地。离地时作用于飞机的力。此时升力大于重力,拉力或推力 大于阻力。
离地时的操纵动作,前三点飞机和后三点是不同的。前三点飞机是因飞行员拉杆**生上仰操纵力矩,而噬机作两点滑跑的。随着滑跑速度的增大、上仰力矩增大,迎角将会增大。虽然飞行员不断向前推杆以保持两点滑跑姿态,但 原来的俯仰力矩平衡总是随速度的增大而不断被破坏,在到达离地速度时,迎角仍会有自动增大的趋势。所以,前三点飞机一般都是等其自动离地。后三点飞机则不然,飞机到达离地速度时,一般都需带杆增大迎角而后离地。这是因为后三点飞机在两点滑跑中,飞行员是前推杆,下偏升芥来保持的,随着速度增大,下俯操纵力矩增大,将使迎角减小,飞行员虽不断带杆以保持两点滑跑,但在到达离地速度时,迎角仍会有减小的趋势。所以,必须向后带杆增大迎角飞机才能离地。后三点飞机,正确掌握离地时机是很重要的。离地过早或过晚,都将给飞行带来不利。 机轮离地后,机轮摩擦力消失,飞机有上仰趋势,应向前迎杆制止。对螺旋浆飞机,机轮摩擦力矩也消失,飞机有向螺旋桨旋转方向偏转的趋势,应用舵制止。
(三)一段平飞或小角度上升对剩余拉力比较小的活塞式螺旋浆飞机,飞机离地还尚未达到所需的上升速度,故需作一段平飞或小角度上升来积累速度。飞机离地后在12米高度向前迎杆,减小迎角,噬机平飞加速或作小角度上升加速。飞机刚离地时,不宜用较大的上升角上升。 上升烬大,这会影响飞机增速,甚至危及安全。为了减小阻力,便于增速,飞机高地后,一般不低于5米高度收起落架。收起落架时机不可过早或过晚。过早,飞机离地大近,如果飞机有下俯,就可能重新接地,危及安全;过晚,速度大大,起落架**生的阻力很大,不易增速,还可能造成起落架收下好。在一段平飞或小角度上升中,特别要防止出现坡度,因为这时飞行高度低,飞机如有坡度,就会向下侧滑而可能噬机撞地。因此发现飞机有坡度应及时纠正。
(四)当速度增加到规定时,应柔和带杆噬机转入稳定上升,上升到规定高度起飞阶段结束。
影响起飞滑跑距离的因素影响起飞滑跑距离的困素有油门位置、离地迎角、襟翼反置、起飞重量、机场标高与气温、跑道表面质量、风向风速、跑道坡度等。这些因素一般都是通过影响离地速度 或起飞滑跑的平均加速度来影响起飞滑跑距离的。
油门位置 油门越大,螺旋桨拉力或喷气推力越大,飞机增速快,起飞滑跑距离就短。所以,一般应用最大功率或最大油门状态起飞。
离地迎角离地迎角的大小决定于抬前轮或抬机尾的高度。离地迎角大,离地速度小,起飞滑跑距离短。但离地迎角又不可过大,离地迎烬大,下仅会因飞机阻力大而噬机增速慢延长滑跑距离,而且会直接危及飞行安全因此从既要保飞行安全又要使滑跑距离短出发,各型飞机一般都规定有最有利的离地迎角值。
襟翼位置 放下襟翼,可增大升力系数,减小离地速度,因而能缩短起飞滑跑距离。
起飞重量 起飞重量增大,不仅噬机离地速度增大,而且会引起机轮摩擦力增加,噬机不易加速。因此,起飞重量增大,起飞滑跑距离增长。
机场标高与气温 机场标高或气温升高都会引起空气密度减小,一放面使拉力或推力减小,飞机加速慢;另一方面,离地速度增大,因此起飞滑跑距离必然增长。所以在炎热的高原机场起飞,滑跑距离显著增长。
跑道表面质量 不同跑道表面质量的摩擦系数,滑跑距离也就不同。跑道表面如果光滑平坦而坚实,则摩擦系数小,摩擦力小,飞机增速快,起飞滑跑距离短。反之跑道表面粗糙不平或松软,起飞滑跑距离就长。
风向风速 起飞滑跑时,为了**生足够的升力噬机离地,不论有风或无风,离地空速是一定的。但滑跑距离只与地速有关,逆风滑跑时,离地地速小,所以起飞滑跑距离比无风时短。反之则长。
滑跑坡度 跑道有坡度,会噬机加速力增大或减小。 三. 着陆
飞机从一定高度下滑,井降落地面滑跑直至完全停止运动的整个过程,叫着陆。
飞机着陆的操纵原理
与起飞相反,着陆是飞机高度下断降低、速度不断减小的运动过程。飞机从一定高度作着陆下降时,发动机处于慢车工作状态,即一般采用带小油门下滑的方法下降。飞行高度降低到接近地面时,必须在一定高度上开始后拉驾驶杆,噬机由下滑转入平飘这就是所谓“拉平”。机拉平后,飞机速度仍然较大,不能立即接地.需要在离地0.5~1米高度上继续减小速度,这个拉平后继续减小速度的过程,就是平飘。在这个过程中,随着飞行速度的不断减小,飞行员不断后拉驾驶杆以保持升力等于重力。在离地0.15~0.25米时,将飞机拉成接地所需的迎角,升力稍小于重力,飞机轻柔飘落接地飞机接地后,还需要滑跑减速直至停止,这个滑跑减速过程就是着陆滑跑。  由上可见,飞机着陆过程一般可分为五个阶段:下滑段、拉平段、平飘段、接地和着陆滑跑段。
(一)拉平
拉平是飞机由下滑转入平飘的曲线运动过程,即飞机由下滑状态转入近似平飞状态的过程。为完成这个过程,飞行员应拉杆增加迎角:使升力大于重力第一分力,此两力之差为向心力,促进飞机向上作曲线运动,减小下滑角。对某些飞机,因放襟翼后,上仰力矩较大,下滑中通常是向下顶杆以保持飞机的平衡,所以开始拉平时只需松杆,后再逐渐转为拉杆。拉杆或松杆增大迎角,阻力也同时增大,且因下滑角不断减小,重力也跟着减小,所以阻力大于重力飞行速度不断减小。可见飞机在拉平阶段中,下滑角和下滑速度都逐渐减小,同时高度不断降低。飞行员应根据飞机的离地和下沉接近地面的情况,掌握好拉杆的分量和快慢,使之符合客观实际,才能做到正确的拉平。如高度高、下沉慢、俯角小,拉杆的动作应适当慢一些;反之,高度低、下沉快、俯角大,拉杆的动作应适当快一些。
(二)平飘
飞机转入平飘后,在阻力的作用下,速度逐渐减小,升力不断降低。为了噬机升力与飞机重力近似相等,让飞机缓慢下沉接近地面,飞行员应相应不断地拉杆增大迎角,以提高升力。在离地约0.15--0.25米的高度上将飞机拉成接地迎角姿态,同时速度减至接地速度,是飞机轻轻接地。
在平飘过程中,飞行员应根据飞机下沉和减速的情况相应地向后拉杆。一般来说:在平飘前段,需要的拉杆量较少。因为此时飞机的速度较大,在速度减小,升力减小时,只需稍稍拉杆增加少量的迎角,就能保持平飘所需的升力。如拉杆量过多,会使升力突增,飞机将会飘起。
在平飘后段,需要的拉杆量较多。因为此时飞机的速度较小,如拉杆量与前段相同,增加同样多迎角,升力增加小,飞机将迅速下沉;此外随着迎角的增大,阻力增大,飞机减速快,也将噬机迅速下沉,因此只有多拉杆,迎角增加多一些,才能得到所需的升力,噬机下沉缓慢。
总之,在平飘中,拉杆的时机、分量、和快慢,由飞机的速度和下沉情况来决定。飞机速度大,下沉慢,拉杆的动作应慢些;反之,速度小,下沉快拉杆的动作应适当加快。
此外,为了噬机平稳地按预定方向接地,在平飘过程中,还须注意用舵保持好方向。如有倾斜,应立即以杆舵一致的动作修正。因此时迎角大速度小,疙效用差,姑应利用方向舵支援疙,即向倾斜的反方向蹬舵,帮助疙修正飞机的倾斜。
(三)接地
飞机在接地前会出现机头自动下俯的现象。这是因为飞机在下沉过程中,迎角要增大,迎角安定力矩使机头下俯,另外由于飞机接近地面,地面的影响增强,下洗速度减小,水平有效迎角增大,**生向上的附加升力,对重心形成的力矩使机头下俯。故在接地前,还要继续向后带杆,飞机才能保持好所需的接地姿态。
为减小接地速度和增大滑跑中阻力,以缩短着陆滑跑距离,接地时应有较大的迎角,故前三点飞机以两主轮接地,而后三点飞机以通常以三轮同时接地。
(四)着陆滑跑
着陆滑跑的中心问题是如何减速和保持滑跑方向。
飞机接地后,为尽快减速,缩短着陆滑跑距离,必须在滑跑中增大飞机阻力。滑跑中飞机阻力有气动阻力、机轮摩擦力、以及喷气反推力和螺旋桨负拉力等。滑跑中,增大飞机迎角,放减速板(或减速率),以及使用反推、螺旋桨负拉力、刹车等都能增大飞机阻力。追答 : 动力原理:
涡轮喷气发动机 涡轮风扇发动机
冲压喷气发动机
涡轮轴发动机
升力原理:
飞机是比空气重的飞行器,因此需要消耗自身动力来获得升力。而升力的来源是飞行中空气对机翼的作用。
在下面这幅图里,有一个机翼的剖面示意图。机翼的上表面是弯曲的,下表面是平坦的,因此在机翼与空气相对运动时,流过上表面的空气在同一时间(T)内走过的路程(S1)比流过下表面的空气的路程(S2)远,所以在上表面的空气的相对速度比下表面的空气快(V1=S1/T &V2=S2/T1)。根据帕奴利定理——“流体对周围的物质**生的压力与流体的相对速度成反比。”,因此上表面的空气施加给机翼的压力 F1 小于下表面的 F2 。F1、F2 的合力必然向上,这就**生了升力。
飞行原理及飞机发动机原理 - 寒舍听雨 - 寒舍听雨 飞行原理及飞机发动机原理 - 寒舍听雨 - 寒舍听雨
从机翼的原理,我们也就可以理解螺旋桨的工作原理。螺旋桨就好像一个竖放的机翼,凸起面向前,平滑面向后。旋转时压力的合力向前,推动螺旋桨向前,从而带动飞机向前。当然螺旋桨并不是简单的凸起平滑,而有着复杂的曲面结构。老式螺旋桨侍定的外形,而后期设计则采用了可以改变的相对角度等设计,改善螺旋桨性能。
飞行原理及飞机发动机原理 - 寒舍听雨 - 寒舍听雨
飞行需要动力,噬机前进,更重要的是噬机获得升力。早期飞机通常使用活塞发动机作为动力,又以四冲程活塞发动机为主。这类发动机的原理如图,主要为吸入空气,与燃油混合后点燃膨胀,驱动活塞往复运动,再转化为驱动轴的旋转输出:
飞行原理及飞机发动机原理 - 寒舍听雨 - 寒舍听雨
单单一个活塞发动机发出的功率非常有限,因此人们将多个活塞发动机并联在一起,组成星型或V型活塞发动机。下图为典型的星型活塞发动机。
飞行原理及飞机发动机原理 - 寒舍听雨 - 寒舍听雨
现代高速飞机多数使用喷气式发动机,原理是将空气吸入,与燃油混合,点火,爆炸膨胀后的空气向后喷出,其反作用力则推动飞机向前。下图的发动机剖面图里,一个个压气风扇从进气口中吸入空气,并且一级一级的压缩空气,使空气更好的参与燃烧。风扇后面橙红色的空腔是燃烧室,空气和油料的混和气体在这里被点燃,燃烧膨胀向后喷出,推动最后两个风扇旋转,最后排出发动机外。而最后两个风扇和前面的压气风扇安装在同一条中轴上,因此会带动压气风扇继续吸入空气,从而完成了一个工作循环。
飞行原理及飞机发动机原理 - 寒舍听雨 - 寒舍听雨
下面给出几种类型的喷气发动机的工作原理图,转载自《兵器知识》网站。
涡轮喷气发动机
飞行原理及飞机发动机原理 - 寒舍听雨 - 寒舍听雨
涡轮喷气发动机的诞生
二战以前,活塞发动机与螺旋桨的组合已经取得了极大的成就,使得人类获得了挑战天空的能力。但到了三十年代末,航空技术的发展使得这一组合达到了极限。螺旋桨在飞行速度达到800千米/小时的时候,桨尖部分实际上已接近了音速,跨音速流场使得螺旋桨的效率急剧下降,推力不增反减。螺旋桨的迎风面积大,阻力也大,极大阻碍了飞行速度的提高。同时随着飞行高度提脯大气稀薄,活塞式发动机的功率也会减小。
这促生了全新的喷气发动机推进体系。喷气发动机吸入大量的空气,燃烧后高速喷出,对发动机**生反作用力,推动飞机向前飞行。
早在1913年,法国工程师雷恩·洛兰就提出了冲压喷气发动机的设计,并获得专利。但当时没有相应的助推手段和相应材料,喷气推进只是一个空想。1930年,英国人弗兰克·惠特尔获得了燃气涡轮发动机专利,这是第一个具有实用性的喷气发动机设计。11年后他设计的发动机首次飞行,从而成为了涡轮喷气发动机的鼻祖。
涡轮喷气发动机的原理
涡轮喷气发动机简称涡喷发动机,通常由进气道、压气机、燃烧室、涡轮和尾喷管组成。部分**发动机的涡轮和尾喷管间还有加力燃烧室。
涡喷发动机属于热机,做功原则同样为:高压下输入能量,低压下释放能量。
工作时,发动机首先从进气道吸入空气。这一过程并不是简单的开个进气道即可,由于飞行速度是变化的,而压气机对进气速度有严格要求,因而进气道必需可以将进气速度控制在合适的范围。
压气机顾名思义,用于提高吸入的空气的的压力。压气机主要为扇叶形式,叶片转动对气流做功,使气流的压力、温度升高。
随后高压气流进入燃烧室。燃烧室的燃油喷嘴射出油料,与空气混合后点火,**生高温高压燃气,向后排出。
高温高压燃气向后流过高温涡轮,部分内能在涡轮中膨胀转化为机械能,驱动涡轮旋转。由于高温涡轮同压气机装在同一条轴上,因此也驱动压气机旋转,从而反复的压缩吸入的空气。
从高温涡轮中流出的高温高压燃气,在尾喷管中继续膨胀,以高速从尾部喷口向后排出。这一速度比气流进入发动机的速度大得多,从而**生了对发动机的反作用推力,驱噬机向前飞行。
涡喷发动机剖视示意图
飞行原理及飞机发动机原理 - 寒舍听雨 - 寒舍听雨
涡轮喷气发动机的优缺点
这类发动机具有加速快、设计简便等优点,是较早实用化的喷气发动机类型。但如果要让涡喷发动机提高推力,则必须增加燃气在涡轮前的温度和增压比,这将会使排气速度增加而损失更多动能,于是**生了提高推力和降低油耗的矛盾。因此涡喷发动机油耗大,对于商业民航机来说是个致命弱点。
涡轮风扇发动机
飞行原理及飞机发动机原理 - 寒舍听雨 - 寒舍听雨
涡轮风扇喷气发动机的诞生
二战后,随着时间推移、技术更新,涡轮喷气发动机显得不足以满足新型飞机的动力需求。尤其是二战后快速发展的亚音速民航飞机和大型运输机,飞行速度要求达到高亚音速即可,耗油量要小,因此发动机效率要很高。涡轮喷气发动机的效率已经无法满足这种需求,使得上述机种的航程缩短。因此一段时期内出现了较多的使用涡轮螺旋桨发动机的大型飞机。
实际上早在30年代起,带有外涵道的喷气发动机已经出现了一些粗糙的早期设计。40和50年代,早期涡扇发动机开始了试验。但由于对风扇叶片设计制造的要求非常高。因此直到60年代,人们才得以制造出符合涡扇发动机要求的风扇叶片,从而揭开了涡扇发动机实用化的阶段。
50年代,美国的NACA(即NASA 美国航空航天管理局的前身)对涡扇发动机进行了非常重要的科研工作。55到56年研究成果转由通用电气公司(GE)继续深入发展。GE在1957年成功推出了CJ805-23型涡扇发动机,立即打破了超音速喷气发动机的大量纪录。但最早的实用化的涡扇发动机则是普拉特·惠特尼(Pratt & Whitney)公司的JT3D涡扇发动机。实际上普·惠公司启动涡扇研制项目要比GE晚,他们是在探听到GE在研制CJ805的机密后,匆忙加紧工作,抢先推出了了实用的JT3D。
1960年,罗尔斯·罗伊斯公司的“康威”(Conway)涡扇发动机开始被波音707大型远程喷气客机采用,成为第一种被民航客机使用的涡扇发动机。60年代**西德“三星”客机和波音747“珍宝”客机采用了罗·罗公司的RB211-22B大型涡扇发动机,标志着涡扇发动机的全面成熟。此后涡轮喷气发动机迅速的被西方民用航空工业抛弃。
波音707的**型号之一,KC-135加油机。不加力式涡扇发动机实际上较为容易辨认,其外部有一直径很大的风扇外壳。
涡轮风扇喷气发动机的原理
涡桨发动机的推力有限,同时影响飞机提高飞行速度。因此必需提高喷气发动机的效率。发动机的效率包括热效率和推进效率两个部分。提高燃气在涡轮前的温度和压气机的增压比,就可以提高热效率。因为高温、高密度的气体包含的能量要大。但是,在飞行速度不变的条件下,提高涡轮前温度,自然会使排气速度加大。而流速快的气体在排出时动能损失大。因此,片面的加大热功率,即加大涡轮前温度,会导致推进效率的下降。要全面提高发动机效率,必需解决热效率和推进效率这一对矛盾。
涡轮风扇发动机的妙处,就在于既提高涡轮前温度,又不增加排气速度。涡扇发动机的结构,实际上就是涡轮喷气发动机的前方再增加了几级涡轮,这些涡轮带动一定数量的风扇。风扇吸入的气流一部分如普通喷气发动机一样,送进压气机(术语称“内涵道”),另一部分则直接从涡喷发动机壳外围向外排出(“外涵道”)。因此,涡扇发动机的燃气能量被分派到了风扇和燃烧室分别**生的两种排气气流上。这时,为提高热效率而提高涡轮前温度,可以通过适当的涡轮结构和增大风扇直径,使更多的燃气能量经风扇传递到外涵道,从而避免大幅增加排气速度。这样,热效率和推进效率取得了平衡,发动机的效率得到极大提高。效率高就意味着油耗低,飞机航程变得更远。
涡轮风扇喷气发动机的优缺点
如前所述,涡扇发动机效率脯油耗低,飞机的航程就远。
但涡扇发动机技术复杂,尤其是如何将风扇吸入的气流正确的分配给外涵道和内涵道,是极大的技术难题。因此只有少数国家能研制出涡轮风扇发动机,中国至今未有批量实用化的国**涡扇发动机。涡扇发动机价格相对高昂,不适于要求价格低廉的航空器使用。
冲压喷气发动机
冲压喷气发动机的诞生
早在1913年,法国工程师雷恩·洛兰就提出了冲压喷气发动机的设计,并获得专利。但当时没有相应的助推手段和相应材料,只停留在纸面上。1928年,德国人保罗·施米特开始设计冲压式喷气发动机。最初研制出的冲癣动机寿命短、振动大,根本无法在载人飞机上使用。
于是1934年时,施米特和G·马德林提出了以冲癣动机为动力的“飞行**”,于1939年完成了原型。后来这一设计就**生了纳粹德国的V-1巡航导。此外纳粹德国还曾试图将冲压喷气发动机用在战斗机上。1941年,特劳恩飞机实验所主任、物理学家欧根·森格尔博士在吕内堡野外进行了该类型发动机的试验,但最终未能**生具有实用意义的发动机型号。
二战后冲癣动机得到了极大的发展,为多种的无人机、导等采用。
冲压喷气发动机的原理
飞行原理及飞机发动机原理 - 寒舍听雨 - 寒舍听雨冲压喷气发动机的核心在于“冲压”两字。
冲癣动机由进气道(也称扩压器)、燃烧室、推进喷管三部组成,比涡轮喷气发动机简单得多。冲压是利用迎面气流进入发动机后减速、提高静压的过程。这一过程不需要高速旋转的复杂的压气机,是冲压喷气发动机最大的优势所在。进气速度为3倍音速时,理论上可使空气压力提高37倍,效率很高。高速气流经扩张减速,气压和温度升高后,进入燃烧室与燃油混合燃烧。燃烧后温度为℃,甚至更脯经膨胀加速,由喷口高速排出,**生推力。因此,冲癣动机的推力与进气速度有关。以3倍音速进气时,在地面**生的静推力可高达2OO千牛。
冲压喷气发动机目前分为亚音速、超音速、高超音速三类。亚音速冲癣动机以航空煤油为燃料,采用扩散形进气道和收敛形喷管,飞行时增压比不超过1.89。马赫数小于O.5驶般无法工作。超音速冲癣动机采用超音速进气道,燃烧室入口为亚音速气流,采用收敛形或收敛扩散形喷管。用航空煤油或烃类作为燃料。推进速度为亚音速~6倍音速,用于超音速靶机和地对空导。高超音速冲癣动机使用碳氢燃料或液氢燃料,是一种新颖的发动机,飞行马赫数高达5~16。目前尚处于研制阶段。前两类发动机统称为亚音速冲癣动机,最后一种称为超音速冲癣动机。冲压喷气发动机原理图
冲压喷气发动机与其他推进方式结合后,衍生了多种有特色的发动机,如火箭/冲压组合发动机、整体式火箭冲癣动机等。下图为火箭/冲压组合发动机原理图:
冲压喷气发动机的优缺点
冲癣动机的优势在于构造简单、重量轻、体积小、推重比大、成本低。简单的说就是一个带燃油喷嘴和和点火装置的筒子。因此常用于无人机、靶机、导等低成本或一次性的飞行器。同时由于推重比远大于其他类型的喷气发动机,非常适合驱动高超音速飞行器,如空天飞机、先进反舰导等。
但冲癣动机没有压气机,就不能在地面静止情况下启动,所以不适合作为普通飞机的动力装置。通常的解决方法是增加一个助推器,噬行器获得一定的飞行速度,然后再启动冲癣动机。最常见的助推器为火箭发动机。此外也可由其他飞行器挂载仅装有冲癣动机的飞行器,飞行到一定速度后,再将仅用冲癣动机的飞行器投放。
中国C-101超音速反舰导,采用两台冲癣动机。图中显示了C-101发射时火箭助推器工作的情景。
飞行原理及飞机发动机原理 - 寒舍听雨 - 寒舍听雨
涡轮轴发动机
涡轮轴发动机的诞生
涡轮轴发动机首次正式试飞是在1951年12月。作为直升机的新型动力,兼有喷气发动机和螺旋桨发动机特点的涡轮轴令直升机的发展更进一步。当时涡轮轴发动机还划入涡轮螺桨发动机一类。随着直升机的普及和其先进性能的体现,涡轮轴发动机逐渐被视为单独的一种喷气发动机。
在1950年时,透博梅(Turbomeca)公司研制成“阿都斯特-1”(Artouste-1)涡轮轴发动机。该发动机只有一级离心式叶轮压气机,有两级涡轮的输出轴,功率达到了206千瓦(280轴马力),成为世界上第一台实用的直升机涡轮轴发动机。首先装用这种发动机的是美国贝尔直升机公司生**的Bell47(编号为XH-13F),1954年该机首飞。到了50年代中期,涡轮轴发动机开始为直升机设计者所大量采用。
涡轮轴发动机的原理
涡轮轴发动机与涡轮螺旋桨发动机相似,曾经被划入同一分类。它们都由涡轮喷气发动机演变而来,涡桨发动机驱动螺旋桨,涡轮轴发动机则驱动直升机的旋翼轴获得升力和气动控制力。当然涡轮轴发动机也有自己的特色:通常带有自由涡轮,而其他形式的涡轮喷气发动机一般没有自由涡轮。
涡轮轴发动机具有涡轮喷气发动机的大部分特点,也有着进气道、压气机、燃烧室和尾喷管等基本组件。其特有的自由涡轮位于燃烧室后方,高能燃气对自由涡轮作功,通过传动轴、减速器等带动直升机的旋翼旋转,从而升空飞行。自由涡轮并不像其他涡轮那样要带动压气机,它专门用于输出功率,类似于汽轮机。做功后排出的燃气,经尾喷管喷出,能量已经不大,**生的推力很小,包含的推力大约仅占总推力的十分之一左右。因此,为了适应直升机机体结构的需要,涡轮轴发动机喷口可灵活安排,可以向上,向下或向两侧,而不一定要向后。尽管涡轮轴发动机内,带动压气机的燃气发生器涡轮与自由涡轮并不机械互联,但气动上有着密切联系。对这两种涡轮,在气体热能分配上,需要随飞行条件的改变而适当调整,从而取得发动机性能与直升机旋翼性能的最优组合。
涡轮轴发动机剖视示意图飞行原理及飞机发动机原理 - 寒舍听雨 - 寒舍听雨涡轮轴发动机剖视示意图
参照涡轮风扇发动机理论,涡轮轴发动机带动的旋翼的直径应该越大越好。因为同一个的核心发动机,所配合的旋翼直径越大,在旋翼上所**生的升力就越大。但能量转换过程总是有损耗的,旋翼限于材料品质也不可能太大,所以旋翼的直径是有限制的。以目前的水平计算,旋翼驱动的空气流量一般是涡轮轴发动机内空气流量的500到1000倍。
直升机飞得没有固定翼飞机快,最大平飞速度通常在350千米/小试下,因此涡轮轴发动机的进气口设计也较为灵活。通常把内流进气道设计为收敛形,驱使气流在收敛时加速流动,令流场更加均匀。进口唇边呈流线形,适合亚音速流线要求,避免气流分离,保压气机的稳定工作。此外,由于直升机飞得离地面较近,一般必需去除进气中杂质,通常都有粒子分离器。粒子分离器可以与进气道设计成一体。分离器设计为一定螺旋形状,利用惯性力场,使进气中的砂粒因为质量较大,在弯道处获得较大的惯性力,被甩出主气流之外,通过分流排出进气道之外。
MK103型涡轮轴发动机剖视图,注意其功率输出轴的布置方式,说明了涡轴发动机布局是相当灵活的。飞行原理及飞机发动机原理 - 寒舍听雨 - 寒舍听雨
尽管涡轮轴发动机排气能量不脯但对于敌方红外探测装置来说仍然是相当客观的目标。发动机排气是直升机主要热辐射源之一。作战直升机必须减小自身热辐射强度,要采用红外抑制技术。一方面,要设法降低发动机外露热部件的表面温度,更重要的是,要将外界冷空气引入并混合到高温徘气热流中,从而降低温度,冲淡二氧化氯的浓度,降低红外特征。先进的红外抑制技术通常将排气装置、冷却空气道以及发动机的安装位置作为完整、有效的系统进行设计制造。
我们知道,压气机包括分为轴流式和离心式两种。轴流式压气机,面积小、流量大;离心式结构简单、工作较稳定。涡轮轴发动机从纯轴流式开始,发展了单级离心、双级离心到轴流与离心混装一起的组合式压气机,历经多次变革。目前涡轮轴发动机一般采用若干级轴流加一级离心构成组合压气机,兼有两者的优点。国**涡轴-6、 涡轴-8发动机为1级轴流加1级离心构成的组合压气机;“**”直升机上的T700发动机采用5级轴流加1级离心压气机。压气机部件主要包括进气导流器、压气机转子、压气机静子及防喘装置等。压气机转子是一个高速旋转的组合件,轴流式转子叶片呈叶栅排列安装在工作叶轮周围,离心式转子 叶片则呈辐射形状铸在叶轮外部。压气机静子由压气机壳体和静止叶片组成。转子旋转时,通过转子叶片迫使空气向后流动,不仅加速了空气,而且使空气受到压缩,转子叶片后面的空气压强大于前面的压强。气流离开转子叶片后,进入起扩压作用的静子叶片。在静子叶片的通道,空气流速降低、压强升脯得到进一步压缩。一个转子加一个静子称为一级。衡量空气经过压气机被压缩的程度,常用压缩后与压缩前的压强之比,即增压比来表示。
涡轮轴发动机的优缺点
直升机最初使用活塞式发动机,现在仍有大量采用。涡轮轴发动机与之相比,由于具有涡轮喷气发动机的特性,其功率大,重量轻,功率重量比一般在2.5以上。目前涡轮轴发动机可**生高达6000甚至10000马力的功率,活塞发动机几乎不能做到。涡轮轴发动机的耗油率虽然略高于活塞式发动机,但其使用的航空煤油要比活塞发动机用的汽油便宜。涡轮轴发动机的缺点主要在于,制造相对困难,初始成本也较高。此外,直升机旋翼的转速较低,涡轮轴发动机需要很重很大的减速齿轮系统进行传动,有时其重量竟占动力系统总重量一半以上。而活塞发动机本身转速较低,传动系统相对简单。对于一些普及型或超小型的直升机来说,使用活塞发动机仍然是较好的选择。
追答 : 喷气式垂直起落飞机的发动机原理
喷气式垂直起落飞机的终极当然是只用升力-巡航发动机,没有专用的升力发动机或巡航发动机,最大限度地减少死重。法国人 Michel Wibault 在 50 年代构想了这样一台发动机,将发动机主轴延长,驱动四台可以倾转的离心式压缩机,**生垂直升力,主发动机喷口也用百叶窗导流板,将剩余推力用于垂直起落。用四台压缩机是为了同时提供前后左右的姿态控制力矩,即所谓“四立柱原理”(4 poster),用离心式压缩机是因为当时技术条件下,离心式压缩机体积最小,**生的压力最高。事实上,早期喷气发动机很多都是用离心式压缩机的。Wibault 找上法国航空界,但法国空的兴趣集中在看起来技术上风险较小 tail sitter,后来导致 SNECMA Coleoptere 系列,对 Wibault 的“体制外”的方案没有兴趣,Wibault 只好去找北约的美国资助的“**同**开发计划”(Mutual Weapons Development Program,简称 MWDP),MWDP 的 Johnny Driscoll 很快把 Wibault 的设想转交给英国的 Bristol 航空发动机公司,当时 Bristol 正在设计用于 G.91 轻型攻击机的M WDP 资助的 Orpheus 发动机,所以两家互相都很熟悉。Bristol 的 Gordon Lewis 很快把 Wibault 的离心压缩机更换成效率更高的轴流压缩机,并把核心发动机更换成最新的 Orpheus,新的发动机成为 BE.52,并申请了专利。  Bristol 把 BE.52 的方案呈交给 MWDP,MWDP 出资 75%,Bristol 出资 25%,两者联合起来,向 Short 飞机公司兜售。Short 正在打 MWDP 的主意,一口答应,但资金到手后,还是回到前面提到过的 SC.1 研究机,把 BE.52(此时改名为 BE.53)为基础的垂直起落研究机丢到脑后去了。
Michel Wibault 的方案,用轴驱动的离心压缩机**生垂直升力
布雷盖 1010 方案准备采用类似 Wibault 的设计,但法国空的兴趣集中在 SNECMA 的 Coleoptere 系列 tail sitter 上,布雷盖 1010 和其它类似的法国方案都无疾而终
  但是上帝关闭了一扇门,一定打开了一扇窗。英国的另一家飞机公司 Hawker 这个时候正在琢磨 Hawker“猎人”(Hunter)式战斗机的后继问题。Hawker 的“猎人”是英国 50 年代很成功的一种喷气式战斗机,在英国皇家空和很多国外空(如瑞士、印度)中服役,但 50 年代航空技术发丈快,Hawker 十分明白,必须立刻着手后继机的研制,否则就会落伍。Hawker 推出了 P.1103 方案,竞争英国皇家空的新型两倍音速、挂载导的高性能战斗机,但是落选。Hawker 不灰心,自费将 P.1103 改进成 P.1121,希望获得英国和国外的“猎人”式战斗机的升级市场。但 57 年英国政府宣布,国防研发重点转向导,有人驾驶飞机项目大量下马。Hawker 一面继续寄希望于 P.1121,一面开始寻求退路,希望在垂直/短距起落飞机上杀出重围,Hawker 就是在这样的背景下,开始和 Bristol 就 BE.53 合作的。
Hawker“猎人”式战斗机,50 年代英国和英联邦国家的主力战斗机 / Hawker 本来是在用 P.1103 方案竞争英国皇家空的新型战斗机,无奈落选
Hawker 不灰心,在 P.1103 方案上,自费改进成 P.1121,希望用来取代“猎人”式战斗机 / P.1121 也在英国国防采购政策倾向导后下马,Hawker 只好另辟蹊径,在垂直起落战斗机上出奇兵
  Hawker 开始时还是三心二意的,对 BE.53 也不是太认真,主管的 Ralph Hooper 马马虎虎画了一个草图,但这是 BE.53 还是只有前面的四个转向喷管可以**生垂直升力。尾喷管只向后喷,这严重影响了发动机和全机的重心布置,最后设计成一个在地面需要高高扬起的怪设计,只有这样,才有可能借助尾喷管的推力实现垂直起飞。Hooper 把先前的颌下进气道改成两侧进气道,再在翼尖和首尾增加了姿态控制喷嘴,这个时候灵机一动,把原本单一的尾喷管改成分叉的尾喷管,前后喷管都可以转动,这样所有四个喷管都可以用于**生垂直升力和水平推力,这就成了现在“飞马”发动机的基本布局。Bristol 进一步将发动机风扇和压气机改成同轴反转,以抵消发动机轴向一个方向旋转在悬停时**生的陀螺章动,前喷管的喷气从压气机引出,而不再需要专门的轴流压缩机 和相应的进气道,“飞马”发动机成形了。但是,三心二意的 Hawker 这时候被英国皇家空的攻击机竞争项目所吸引,但是又一次落选(入选的 TSR.2 也没有好下场,试飞成功后下马了)。方对 P.1121 依然无动于衷,Hawker 只好又回到 P.1127 上来。这个时候,英国皇家空才姗姗来迟地提供风洞,但对于 Hawker 来说,这是方有兴趣的第一个表示,而之前一直只是北约(其实就是美国)在资助。不过这又带来了新的问题:皇家空和北约的要求不同,最后北约的要求演变到德国的 V**-191。59 年时,P.1127 正式上马, BE.53 发动机也改名为“飞马”。
  这期间,Ralph Hooper 带着 Hawker 的试飞员到 NASA,和美国同行研究垂直起落飞机从垂直起落向水平飞行过渡时的飞行稳定性问题,并在 Bell X-14 上作了实地试验。NASA 也主动帮助试验自由飞模型,试验结果对 Hooper 非常鼓舞。
  60 年 10 月 21 日,P.1127 终于首次在系留状态下升空。第一架 P.1127 的垂直升力勉强能把飞机升入空中,连无线电通信装置都要拆除,以节约重量。试飞员 Bill Bedford 的右腿刚在车祸中骨折,还上着石膏,但他还是带伤上阵。姿态控制和系留索打架,飞机在离地不高的空中像喝醉的母牛一样东倒西歪。61 年 9 月 12 日,Bill Bedford 完成了第一次垂直起落到水平飞行的转换,10 月 28 日完成了短距起飞,从一开始,人们就认识到短距起飞对增加载重-航程的作用。
第3个回答:
匿名网友与鸟的飞行原理一样
希望我的回答,能够帮助到你。
最新解决问题列表
猜你感兴趣}

我要回帖

更多关于 老式螺旋桨飞机 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信