iptables有哪些gta5单机有趣玩法的玩法

我发现目前所有的HOWTO都缺乏Linux 2.4.x 内核中的Iptables和Netfilter 函数的信息,于是我试图回 答一些问题,比如状态匹配。我会用插图和例子&&加以说明,此处的例子可以在你的/etc/rc.d/使用。最初这篇文章是以HOWTO文
档的形式书写的,因为许多人只接受HOWTO文档。
还有一个小脚本,我写它只是为 使你在配置它的时候能象我一样有成功的感觉。
我请教了Marc Boucher 及netfilter团队的其他核心成员。对他们的工作以及对我在为 书写这个指南时的帮助表示极大的谢意,现在这个指南在我自己的站点frozentux.net上进行维护。这个文 档将一步一步教你setup过程,让你对iptables包有更多的了解。这大部分的东西都基于例子rc.firewall 文件,因为我发现这是学习iptables的一个好方法。我决定自顶向下地跟随rc.firewall 文件来学习 iptables。虽然这样会困难一些,但更有逻辑。当你碰到不懂的东西时再来查看这个文件。
文中包含了一些术语,你应该有所了解。这里有一些解释,并说明了本文中如何使用它们。
DNAT - Destination Network Address Translation 目的网络地址转换。 DNAT是一种改变数据包目的 ip地址的技术,经常和SNAT联用,以使多台服务器能共享一个ip地址连入Internet,并且继续服务。通过对 同一个ip地址分配不同的端口,来决定数据的流向。
Stream - 流 是指发送和接收的数据包和通信的双方都有关系的一种连接(译者注:本文中,作者把连 接看作是单向的,流表示双向的连接)。一般的,这个词用于描述在两个方向上发送两个或三个数据包的连 接。对于TCP,流意味着连接,它发送了一个SYN,然后又回复SYN/ACK。但也可能是指这样的连接,发送一 个SYN,回复ICMP主机不可达信息。换句话说,我使用这个词很随意。
SNAT - Source Network Address Translation源网络地址转换。这是一种改变数据包源ip地址的技术, 经常用来使多台计算机分享一个Internet地址。这只在IPv4中使用,因为IPv4的地址已快用完了,IPv6将解 决这个问题。
State - 状态 指明数据包处于什么状态。状态在中定义,或由用户在Netfilter/iptables中自定义。需要注 意的是Netfilter设定了一些关于连接和数据包的状态,但没有完全使用使用RFC
793的定义。
User space - 用户空间,指在内核外部或发生在内核外部的任何东西。例如,调用&iptables -h&发生在内核外部,但iptables -A FORWARD -p tcp -j ACCEPT&(部分地)发生在内核内部,因为一条新的规则加入了规则集。
Kernel space - 内核空间 ,与用户空间相对,指那些发生在内核内部。
Userland - 参见用户空间
target - 这个词在后文中有大量的应用,它表示对匹配的数据包所做的操作。
这一章是学习iptables的开始,它将帮助你理解Netfilter和iptables在Linux中 扮演的角色。它会告诉你如何配置、安装防火墙,你的经验也会随之增长。当然,要想达到你的目标,是要 花费时间,还要有毅力。( 译者注:听起来很吓人的:) )
iptables&可以从下载,网站中的FAQs也是很好的教程。iptables&也使用一些内核空间,可 以在用make
configure配置内核的过程中配置,下面会介绍必要的步骤。
为了运行iptables,需要在内核配置期间,选择以下一些选项,不管你用make config或其他命令。
CONFIG_PACKET&- 允许程序直接访问网络设备(译者注:最常用的就 是网卡了),象tcpdump 和 snort就要使用这个功能。
严格地说,iptables并不需要CONFIG_PACKET,但是它有很多用处(译者注:其他程序需要), 所以就选上了。当然,你不想要,不选就是了。(译者注:建议还是选的为好)
CONFIG_NETFILTER&- 允许计算机作为网关或防火墙。 这个是必需的,因为整篇文章都要用到这个功能。我想你也需要这个,谁叫你学iptables呢:)
当然,你要给网络设备安装正确的驱动程序,比如,Ethernet 网卡,&PPP&还有&SLIP&。 上面的选项,只是在内核中建立了一个框架, iptables确实已经可以运行,但不能做任何实质性的工作。我们需要更多的选项。以下给出内核2.4.9的选 项和简单的说明:
CONFIG_IP_NF_CONNTRACK&- 连接跟踪模块,用于&NAT(网络地址转换)&和&Masquerading(ip地址伪 装),当然,还有其他应用。如果你想把LAN中的一台机子作为防 火墙,这个模块你算选对了。脚本&要想正常工作,就必需有它的存在。
CONFIG_IP_NF_FTP&- 这个选项提供针对FTP连接进行连接跟踪的功 能。一般情况下,对FTP连接进行连接跟踪是很困难的,要做到这一点,需要一个名为helper的动态链接 库。此选项就是用来编译helper的。如果没有这个功能,就无法穿越防火墙或网关使用FTP。
CONFIG_IP_NF_IPTABLES&- 有了它,你才能使用过滤、伪装、NAT。它 为内核加入了iptables标识框架。没有它,iptables毫无作用。
CONFIG_IP_NF_MATCH_LIMIT&- 此模块并不是十分必要,但我在例子中用到了。它提供匹配LIMIT的功能,以便于使用一 个适当的规则来控制每分钟要匹配的数据包的数量。比如,&-m
limit --limit 3/minute&的作用是每分钟最多匹配三个数据包。这个功能也可用来消除某种DoS攻击。
CONFIG_IP_NF_MATCH_MAC&- 选择这个模块,可以根据MAC地址匹配数 据包。例如,我们想要阻塞使用了某些MAC地址的数据包,或阻塞某些计算机的通信,用这个很容易。因为 每个Ethernet网卡都有它自己的MAC地址,且几乎从不会改变。但我在中没有用到这个功能,其他例子也未用到。(译者注:这又一次说明了学习是为
将来打基础:) )
CONFIG_IP_NF_MATCH_MARK&- 这个选项用来标记数据包。对数据包做 MARK(标记)操作,我们就可以在后面的表中用这个标记来匹配数据包。后文有详细的说明。
CONFIG_IP_NF_MATCH_MULTIPORT&- 选择这个模块我们可以使用端口范 围来匹配数据包,没有它,是无法做到这一点的。
CONFIG_IP_NF_MATCH_TOS&- 使我们可以设置数据包的TOS(Type Of Service 服务类型)。这个工作也可以用命令ip/tc完成,还可在mangle表中用某种规则设定。
CONFIG_IP_NF_MATCH_TCPMSS&- 可以基于MSS匹配TCP数据包。
CONFIG_IP_NF_MATCH_STATE&- 相比较ipchains&这是最大的更新,有了它,我们可以对数据包做状态匹配。比如,在某个TCP连接的两个方向上已有通 信,则这个连接上的数据包就被看作ESTABLISHED(已建立连接)状态。在&里大量使用了此模块的功能。
CONFIG_IP_NF_MATCH_UNCLEAN&- 匹配那些不符合类型标准或无效的 P、TCP、UDP、ICMP数据包(译者注:之所以此模块名为UNCLEAN,可以这样理解,凡不是正确模式的包都是 脏的。这有些象操作系统内存管理中的“脏页”,那这里就可以称作“脏包”了,自然也就UNCLEAN了)。 我们一般丢弃这样的包,但不知这样做是否正确。另外要注意,这种匹配功能还在实验阶段,可能会有些问 题。
CONFIG_IP_NF_MATCH_OWNER&- 根据套接字的拥有者匹配数据包。比 如,我们只允许root访问Internet。在iptables中,这个模块最初只是用一个例子 来说明它的功能。同样,这个模块也处于实验阶段,还无法使用。
CONFIG_IP_NF_FILTER&- 这个模块为iptables添加基本的过滤表,其 中包含INPUT、FORWARD、OUTPUT链。通过过滤表可以做完全的IP过滤。只要想过滤数据包,不管是接收的还 是发送的,也不管做何种过滤,都必需此模块。
CONFIG_IP_NF_TARGET_REJECT&- 这个操作使我们用ICMP错误信息来回 应接收到的数据包,而不是简单地丢弃它。有些情况必须要有回应的,比如,相对于ICMP和UDP来说,要重 置或拒绝TCP连接总是需要一个TCP RST包。
CONFIG_IP_NF_TARGET_MIRROR&- 这个操作使数据包返回到发送它的计 算机。例如,我们在INPUT链里对目的端口为HTTP的包设置了MIRROR操作,当有人访问HTTP时,包就被发送 回原计算机,最后,他访问的可能是他自己的主页。(译者注:应该不难理解为什么叫做MIRROR了)
CONFIG_IP_NF_NAT&- 顾名思义,本模块提供NAT功能。这个选项使我 们有权访问nat表。端口转发和伪装是必需此模块的。当然,如果你的LAN里的所有计算机都有唯一的有效的 IP地址,那在做防火墙或伪装时就无须这个选项了。是需要的:)
CONFIG_IP_NF_TARGET_MASQUERADE&- 提供MASQUERADE(伪装)操作。 如果我们不知道连接Internet的IP,首选的方法就是使用MASQUERADE,而不是DNAT或SNAT。换句话说,就是 如果我们使用PPP或SLIP等连入Internet,由DHCP或其他服务分配IP,使用这个比SNAT好。因为MASQUERADE 不需要预先知道连接Internet的IP,虽然对于计算机来说MASQUERADE要比NAT的负载稍微高一点。
CONFIG_IP_NF_TARGET_REDIRECT&- 这个操作和代理程序一起使用是很 有用的。它不会让数据包直接通过,而是把包重新映射到本地主机,也就是完成透明代理。
CONFIG_IP_NF_TARGET_LOG&- 为iptables增加&LOG(日志)操作。通过它,可以使用系统日志服务记录某些数据包,这样我们 就能了解在包上发生了什么。这对于我们做安全审查、调试脚本的帮助是无价的。
CONFIG_IP_NF_TARGET_TCPMSS&- 这个选项可以对付一些阻塞ICMP分段 信息的ISP(服务提供商)或服务。没有ICMP分段信息,一些网页、大邮件无法通过,虽然小邮件可以,还 有,在握手完成之后,ssh可以但scp不能工作。我们可以用TCPMSS解决这个问题,就是使MSS(Maximum Segment Size)被钳制于PMTU(Path Maximum Transmit Unit)。这个方法可以处理被Netfilter开发者们
在内核配置帮助中称作“criminally brain-dead ISPs or servers”的问题。
CONFIG_IP_NF_COMPAT_IPCHAINS&-&ipchains&的,这只是为内核从2.2转换到2.4而使用的,它会在2.6中删除。
CONFIG_IP_NF_COMPAT_IPFWADM&- 同上,这只是&ipfwadm的暂时使用的兼容模式。
上面,我简要介绍了很多选项,但这只是内核2.4.9中的。要想看看更多的选项,建议你去Netfilter 看看patch-o-matic。在那里,有其他的一些选项。POM可能会被加到内核里,当然现在还没有。这有很多 原因,比如,还不稳定,Linus Torvalds没打算或没坚持要把这些补丁放入主流的内核,因为它们还在实 验。
把以下选项编译进内核或编译成模块,才能使 用。
CONFIG_PACKET
CONFIG_NETFILTER
CONFIG_IP_NF_CONNTRACK
CONFIG_IP_NF_FTP
CONFIG_IP_NF_IRC
CONFIG_IP_NF_IPTABLES
CONFIG_IP_NF_FILTER
CONFIG_IP_NF_NAT
CONFIG_IP_NF_MATCH_STATE
CONFIG_IP_NF_TARGET_LOG
CONFIG_IP_NF_MATCH_LIMIT
CONFIG_IP_NF_TARGET_MASQUERADE
以上是为保证&正常工作而需要的最少的选 项。其他脚本需要的选项,在相应的章节里都有说明。目前,我们只需注意要学习的这个脚本。
下面,我们来看看如何编译iptables。iptables很多组件的配置、编译是与内核 的配置、编译相关联的,了解这一点是很重要的。某些Linux产品预装了iptables, 比如Red Hat,但是它的缺省设置是不启用iptables的。后文我们会介绍如何启用它,也会介绍一下其他 Linux产品里的iptables情况。
首先要解压iptables包。这里,我用iptables 1.2.6a做例子(译者注:在我翻译时,最新版本已经是 1.2.9,其中又有了不少改进,修补了一些bug,增添了几个match和target。)。命令&bzip2 -cd iptables-1.2.6a.tar.bz2 | tar -xvf -(当然也可以用tar
-xjvf iptables-1.2.6a.tar.bz2,但这个命令可能对一些老版的tar不适用 ) 将压 缩包解压至目录iptables-1.2.6a,其中的INSTALL文件有很多对编译、运行有用的信息。
这一步,你将配置、安装一些额外的模块,也可以为内核增加一些选项。我们这里只是检查、安装一些 未被纳入内核的标准的补丁。当然,更多的在实验阶段的补丁,仅在进行其他某些操作时才会用到。
有一些补丁仅仅处在实验阶段,把它们也安装上不是一个好主意。这一步,你会遇到很多十分有 趣的匹配和对数据包的操作,但它们还正在实验。
为了完成这一步,我们要在iptables的目录内用到如下一些命令:
make pending-patches KERNEL_DIR=/usr/src/linux/
变量KERNEL_DIR指向内核原码的真实路径。一般情况下,都是/usr/src/linux/&,但也会不一样,这要看你所用的Linux产品了。
总之,只有某些补丁会被询问是否加入内核,而Netfilter的开发者们有大量的补丁或附件想要加 入内核,但还要再实验一阵子才能做到。如果你想安装这些东西,就用下面的命令:
make most-of-pom KERNEL_DIR=/usr/src/linux/
这个命令会安装部分patch-o-matic(netfilter世界对补丁的称呼),忽略掉的是非常极端的那一部 分,它们可能会对内核造成严重的破坏。你要知道这个命令的作用,要了解它们对内核原码的影响,好在在 你选用之前,会有所提示。下面的命令可以安装所有的patch-o-matic(译者注:一定要小心哦)。
make patch-o-matic KERNEL_DIR=/usr/src/linux/
要仔细的读读每一个补丁的帮助文件,因为有些patch-o-matic会损坏内核,而有些对其他补丁有破坏作 用。
你要是不打算用patch-o-matic修补内核,以上的命令都用不着,它们不是必需的。不过,你可以 用这些命令来看看有什么有趣的玩意儿,这不会影响任何东西。
安装好patch-o-matic,现在应该重新编译内核了,因为其中增加了一些补丁。但别忘了重新配置内核, 现有的配置文件里可没有你增加的补丁的信息。当然,你也可以先编译iptables&, 再来编译内核。
接下来就该编译iptables了,用下面这个简单的命令:
make KERNEL_DIR=/usr/src/linux/
iptables应该编译好了,如果不行,好好考虑考虑问题在哪儿,要么订阅,那里可能有人能帮助你。
一切顺利的话,我们该安装iptables了,这几乎不会有什么问题的。我们用下面 的命令来完成这一步:
make install KERNEL_DIR=/usr/src/linux/
现在大功告成了。如果你在前面没有重新编译、安装内核,现在就要做了,不然,你还是不能使用更新 后的iptables。好好看看INSTALL吧,那里面有详细的安装信息。
Red Hat 7.1使用2.4.x的内核,支持Netfilter和iptables。Red Hat包含了所有 基本的程序和需要的配置文件,但缺省使用的是B class=COMMAND&ipchains。“iptables为什么不能 用”是最常见的问题,下面就让我们就来说说如何关闭ipchains而起用iptables&。
Red Hat 7.1预装的iptables版本有些老了,在使用之前,你可能想装个新的,再自己编译一下内 核。
我们先要关闭ipchains,并且不想再让它运行起来,做到这一点,要更改目录/etc/rc.d/下的一些文件名。用以下命令完成:
chkconfig --level 0123456 ipchains off
这个命令把所有指向/etc/rc.d/init.d/ipchains的软连接改名为 K92ipchains。以S开头表示,在启动时会由初始化脚本运行此脚本。改为K开头后,就表示终止服务,或以 后在启动时不再运行。这样,ipchains以后不会再开机就运行了。
要想终止正在运行的服务,要用service命令。终止ipchains&服务的命令是:
service ipchains stop
现在,我们可以启动iptables服务了。首先,要确定在哪个运行层运行,一般是 2,3和5,这些层有不同的用处:
2. 不带NFS的多用户环境,和层3的区别仅在于不带网络支持。
3. 多用户环境,就是我们一般事用的层。
5. X11,图形界面。
用下面的命令以使iptables能在这些层运行:
chkconfig --level 235 iptables on
你也可以使用这个命令使iptables能在其他层运行。但没这个必要,因为层1是 单用户模式,一般用在维修上;层4保留不用;层6用来关闭计算机。
启动iptables用:
service iptables start
在脚本iptables里还没有定义规则。在Red Hat 7.1中添加规则的方法有二:第 一个方法是编辑/etc/rc.d/init.d/iptables,要注意在用RPM升级iptables时, 已有的规则可能会被删除。另一个方法是先装载规则,然后用命令iptables-save把
规则保存到文件中,再由目录rc.d下的脚本(/etc/rc.d/init.d/iptables)自 动装载。
我们先来说明如何利用“剪切粘贴大法”设置/etc/rc.d/init.d/iptables。 为了能在计算机启动iptables时装载规则,可以把规则放在“start)”节或函数start()中。注意:如果把 规则放在“start)”节里,则不要在“start)”节里运行start(),还要编辑“stop)”节,以便在关机时或 进入一个不需要iptables的层时,脚本知道如何处理。还应检查“restart”节和“condrestart”节的设 置。
一定要注意,我们所做的改动在升级iptables时可能会被删除,而不管是通过Red Hat网络自动升级还是用 RPM升级。
下面介绍第二种方法:先写一个规则的脚本,或直接用iptables命令生成规则。规则要适合自己的需 要,别忘了实验一下是否有问题,确认正常之后,使用命令iptables-save来保存规 则。一般用iptables-save & /etc/sysconfig/iptables生成保存规则的文件&/etc/sysconfig/iptables,也可以用service
iptables save,它能把规则自动保存在/etc/sysconfig/iptables中。当计算机启动 时,rc.d下的脚本将用命令iptables-restore调用这个文件,从而就自动恢复了规 则。
以上两种方法最好不要混用,以免用不同方法定义的规则互相影响,甚至使防火墙的设置无效。
至此,可以删除预装的ipchains和iptables了,这样可以 避免新旧版本的iptables之间的冲突。其实,只有当你从原码安装时,才需要这样 做。但一般来说,也不会出现互相影响的问题,因为基于rpm的包不使用原码的缺省目录。删除用以下命
rpm -e iptables
既然不用ipchains为什么要保留呢?删吧!命令如下:
rpm -e ipchains
历经磨难,胜利终于到来了。你已经能够从源码安装iptables了。那些老版的东西就删掉吧。
这一章我们来讨论数据包是以什么顺序、如何穿越不同的链和表的。稍后,在你自己写规则时,就会知 道这个顺序是多么的重要。一些组件是iptables与内核共用的,比如,数据包路由的判断。了解到这一点是 很重要的,尤其在你用iptables改变数据包的路由时。这会帮助你弄明白数据包是如何以及为什么被那样路 由,一个好的例子是DNAT和SNAT,不要忘了TOS的作用。
当数据包到达防火墙时,如果MAC地址符合,就会由内核里相应的驱动程序接收,然后会经过一系列操 作,从而决定是发送给本地的程序,还是转发给其他机子,还是其他的什么。
我们先来看一个以本地为目的的数据包,它要经过以下步骤才能到达要接收它的程序:
下文中有个词mangle,我实在没想到什么合适的词来表达这个意思,只因为我的英语太差!我只能把我 理解的写出来。这个词表达的意思是,会对数据包的一些传输特性进行修改,在mangle表中允许的操作是 TOS、TTL、MARK。也就是说,今后只要我们见到这个词能理解它的作用就行了。
Table 3-1. 以本地为目标(就是我们自己的机子了)的包
Step(步骤)
Table(表)
Chain(链)
Comment(注释)
在线路上传输(比如,Internet)
进入接口 (比如, eth0)
PREROUTING
这个链用来mangle数据包,比如改变TOS等
PREROUTING
这个链主要用来做DNAT。不要在这个链做过虑操作,因为某 些情况下包会溜过去。
路由判断,比如,包是发往本地的,还是要转发的。
在路由之后,被送往本地程序之前,mangle数据包。
所有以本地为目的的包都要经过这个链,不管它们从哪儿 来,对这些包的过滤条件就设在这里。
到达本地程序了(比如,服务程序或客户程序)
注意,相比以前(译者注:就是指ipchain)现在数据包是由INPUT链过,而不是FORWARD链。这样更符合 逻辑。刚看上去可能不太好理解,但仔细想想就会恍然大悟的。
现在我们来看看源地址是本地器的包要经过哪些步骤:
Table 3-2. 以本地为源的包
本地程序(比如,服务程序或客户程序)
路由判断,要使用源地址,外出接口,还有其他一些信息。
在这儿可以mangle包。建议不要在这儿做过滤,可能有副作 用哦。
这个链对从防火墙本身发出的包进行DNAT操作。
对本地发出的包过滤。
POSTROUTING
这条链主要在包DNAT之后(译者注:作者把这一次DNAT称作 实际的路由,虽然在前面有一次路由。对于本地的包,一旦它被生成,就必须经过路由代码的处理,但这个 包具体到哪儿去,要由NAT代码处理之后才能确定。所以把这称作实际的路由。),离开本地之前,对包 mangle。有两种包会经过这里,防火墙所在机子本身产生的包,还有被转发的包。
POSTROUTING
在这里做SNAT。但不要在这里做过滤,因为有副作用,而且 有些包是会溜过去的,即使你用了DROP策略。
离开接口(比如: eth0)
在线路上传输(比如,Internet)
在这个例子中,我们假设一个包的目的是另一个网络中的一台机子。让我们来看看这个包的旅程:
Table 3-3. 被转发的包
在线路上传输(比如,Internet)
进入接口(比如, eth0)
PREROUTING
mangle数据包,,比如改变TOS等。
PREROUTING
这个链主要用来做DNAT。不要在这个链做过虑操作,因为某 些情况下包会溜过去。稍后会做SNAT。
路由判断,比如,包是发往本地的,还是要转发的。
包继续被发送至mangle表的FORWARD链,这是非常特殊的情 况才会用到的。在这里,包被mangle(还记得mangle的意思吗)。这次mangle发生在最初的路由判断之后, 在最后一次更改包的目的之前(译者注:就是下面的FORWARD链所做的,因其过滤功能,可能会改变一些包 的目的地,如丢弃包)。
包继续被发送至这条FORWARD链。只有需要转发的包才会走 到这里,并且针对这些包的所有过滤也在这里进行。注意,所有要转发的包都要经过这里,不管是外网到内 网的还是内网到外网的。在你自己书写规则时,要考虑到这一点。
POSTROUTING
这个链也是针对一些特殊类型的包(译者注:参考第6步, 我们可以发现,在转发包时,mangle表的两个链都用在特殊的应用上)。这一步mangle是在所有更改包的目 的地址的操作完成之后做的,但这时包还在本地上。
POSTROUTING
这个链就是用来做SNAT的,当然也包括Masquerade(伪 装)。但不要在这儿做过滤,因为某些包即使不满足条件也会通过。
离开接口(比如: eth0)
又在线路上传输了(比如,LAN)
就如你所见的,包要经历很多步骤,而且它们可以被阻拦在任何一条链上,或者是任何有问题的地方。 我们的主要兴趣是iptables的概貌。注意,对不同的接口,是没有什么特殊的链和表的。所有要经防火墙/ 路由器转发的包都要经过FORWARD链。
在上面的情况里,不要在INPUT链上做过滤。INPUT是专门用来操作那些以我们的机子为目的地址 的包的,它们不会被路由到其它地方的。
现在,我们来看看在以上三种情况下,用到了哪些不同的链。图示如下:
要弄清楚上面的图,可以这样考虑。在第一个路由判断处,不是发往本地的包,我们会发送它穿过 FORWARD链。若包的目的地是本地监听的IP地址,我们就会发送这个包穿过INPUT链,最后到达本地。
值得注意的是,在做NAT的过程中,发往本机的包的目的地址可能会在PREROUTING链里被改变。这个操作 发生在第一次路由之前,所以在地址被改变之后,才能对包进行路由。注意,所有的包都会经过上图中的某 一条路径。如果你把一个包DNAT回它原来的网络,这个包会继续走完相应路径上剩下的链,直到它被发送回 原来的网络。
想要更多的信息,可以看看,这个脚本包括了一些规则,它们会向你展示包是怎样通过各个表和链的。
这个表主要用来mangle包,你可以使用mangle匹配来改变包的TOS等特性。
强烈建议你不要在这个表里做任何过滤,不管是DANT,SNAT或者Masquerade。
以下是mangle表中仅有的几种操作:
TOS操作用来设置或改变数据包的服务类型域。这常用来设置网络上的数据包如何被路由等策略。 注意这个操作并不完善,有时得不所愿。它在Internet上还不能使用,而且很多路由器不会注意到 这个域值。换句话说,不要设置发往Internet的包,除非你打算依靠TOS来路由,比如用iproute2。
TTL操作用来改变数据包的生存时间域,我们可以让所有数据包只有一个特殊的TTL。它的存在有 一个很好的理由,那就是我们可以欺骗一些ISP。为什么要欺骗他们呢?因为他们不愿意让我们共享 一个连接。那些ISP会查找一台单独的计算机是否使用不同的TTL,并且以此作为判断连接是否被共享 的标志。
MARK用来给包设置特殊的标记。iproute2能识别这些标记,并根据不同的标记(或没有标记) 决定不同的路由。用这些标记我们可以做带宽限制和基于请求的分类。
此表仅用于NAT,也就是转换包的源或目标地址。注意,就象我们前面说过的,只有流的第一个 包会被这个链匹配,其后的包会自动被做相同的处理。实际的操作分为以下几类:
MASQUERADE
DNAT操作主要用在这样一种情况,你有一个合法的IP地址,要把对防火墙的访问 重定向到其他的机子上(比如DMZ)。也就是说,我们改变的是目的地址,以使包能重路由到某台主机。
SNAT改变包的源地址,这在极大程度上可以隐藏你的本地网络或者DMZ等。一个 很好的例子是我们知道防火墙的外部地址,但必须用这个地址替换本地网络地址。有了这个操作,防火墙就 能自动地对包做SNAT和De-SNAT(就是反向的SNAT),以使LAN能连接到Internet。如果使用类&#28.0.0/24这样的地址,是不会从Internet得到任何回应的。因为IANA定义这些网络(还有其他的)为
私有的,只能用于LAN内部。
MASQUERADE的作用和MASQUERADE完全一样,只是计算机 的负荷稍微多一点。因为对每个匹配的包,MASQUERADE都要查找可用的IP地址,而 不象SNAT用的IP地址是配置好的。当然,这也有好处,就是我们可以使用通过PPP、
PPPOE、SLIP等拨号得到的地址,这些地址可是由ISP的DHCP随机分配的。
filter&表用来过滤数据包,我们可以在任何时候匹配包并过滤它们。 我们就是在这里根据包的内容对包做DROP或ACCEPT的。当然,我们也可以预先在其他地方做些过滤,但是这 个表才是设计用来过滤的。几乎所有的target都可以在这儿使用。大量具体的介绍在后面,现在你只要知道 过滤工作主要是在这儿完成的就行了。
本章将详细介绍状态机制。通读本章,你会对状态机制是如何工作的有一个全面的了解。我们用一些例 子来进行说明状态机制。实践出真知嘛。
状态机制是iptables中特殊的一部分,其实它不应该叫状态机制,因为它只是一种连接跟踪机制。但 是,很多人都认可状态机制这个名字。文中我也或多或或少地用这个名字来表示和连接跟踪相同的意思。这 不应该引起什么混乱的。连接跟踪可以让Netfilter知道某个特定连接的状态。运行连接跟踪的防火墙称作 带有状态机制的防火墙,以下简称为状态防火墙。状态防火墙比非状态防火墙要安全,因为它允许我们编写 更严密的规则。
在iptables里,包是和被跟踪连接的四种不同状态有关的。它们是NEW,ESTABLISHED,RELATED和INVALID。
后面我们会深入地讨论每一个状态。使用--state匹配操作,我们能很容易地控制 “谁或什么能发起新的会话”。
所有在内核中由Netfilter的特定框架做的连接跟踪称作conntrack(译者注:就是connection tracking 的首字母缩写)。conntrack可以作为模块安装,也可以作为内核的一部分。大部分情况下,我们想要,也 需要更详细的连接跟踪,这是相比于缺省的conntrack而言。也因为此,conntrack中有许多用来处理TCP, UDP或ICMP协议的部件。这些模块从数据包中提取详细的、唯一的信息,因此能保持对每一个数据流的跟 踪。这些信息也告知conntrack流当前的状态。例如,UDP流一般由他们的目的地址、源地址、目的端口和源
端口唯一确定。
在以前的内核里,我们可以打开或关闭重组功能。然而,自从iptables和Netfilter,尤其是连接跟踪被 引入内核,这个选项就被取消了。因为没有包的重组,连接跟踪就不能正常工作。现在重组已经整合入 conntrack,并且在conntrack启动时自动启动。不要关闭重组功能,除非你要关闭连接跟踪。
除了本地产生的包由OUTPUT链处理外,所有连接跟踪都是在PREROUTING链里进行处理的,意思就是, iptables会在PREROUTING链里从新计算所有的状态。如果我们发送一个流的初始化包,状态就会在OUTPUT链 里被设置为NEW,当我们收到回应的包时,状态就会在PREROUTING链里被设置为ESTABLISHED。如果第一个包不是本地产生的,那就会在PREROUTING链里被设置为NEW状
态。综上,所有状态的改变和计算都是在nat表中的PREROUTING链和OUTPUT链里完成的。
我们先来看看怎样阅读/proc/net/ip_conntrack里的conntrack记录。这些记 录表示的是当前被跟踪的连接。如果安装了ip_conntrack模块,cat&/proc/net/ip_conntrack&的显示类似:
6 117 SYN_SENT src=192.168.1.6 dst=192.168.1.9 sport=32775 \
dport=22 [UNREPLIED] src=192.168.1.9 dst=192.168.1.6 sport=22 \
dport=32775 use=2
conntrack模块维护的所有信息都包含在这个例子中了,通过它们就可以知道某个特定的连接处于什么状 态。首先显示的是协议,这里是tcp,接着是十进制的6(译者注:tcp的协议类型代码是6)。之后的117是 这条conntrack记录的生存时间,它会有规律地被消耗,直到收到这个连接的更多的包。那时,这个值就会 被设为当时那个状态的缺省值。接下来的是这个连接在当前时间点的状态。上面的例子说明这个包处在状态 SYN_SENT,这个值是iptables显示的,以便我们好理解,而内部用的值稍有不同。SYN_SENT说明我们正在观
察的这个连接只在一个方向发送了一TCP SYN包。再下面是源地址、目的地址、源端口和目的端口。其 中有个特殊的词UNREPLIED,说明这个连接还没有收到任何回应。最后,是希望接收的应答包的信息,他们 的地址和端口和前面是相反的。
连接跟踪记录的信息依据IP所包含的协议不同而不同,所有相应的值都是在头文件linux/include/netfilter-ipv4/ip_conntrack*.h中定义的。IP、TCP、UDP、ICMP协 议的缺省值是在linux/include/netfilter-ipv4/ip_conntrack.h里定义的。具 体的值可以查看相应的协议,但我们这里用不到它们,因为它们大都只在conntrack内部使用。随着状态的
改变,生存时间也会改变。
最近patch-o-matic里有一个新的补丁,可以把上面提到的超时时间也作为系统变量,这样我们就 能够在系统空闲时改变它们的值。以后,我们就不必为了改变这些值而重编译内核了。
这些可通过/proc/sys/net/ipv4/netfilter下的一些特殊的系统调用 来改变。仔细看看/proc/sys/net/ipv4/netfilter/ip_ct_*里的变量吧。
当一个连接在两个方向上都有传输时,conntrack记录就删除[UNREPLIED]标志,然后重置。在末尾有 [ASSURED]的记录说明两个方向已没有流量。这样的记录是确定的,在连接跟踪表满时,是不会被删除的, 没有[ASSURED]的记录就要被删除。连接跟踪表能容纳多少记录是被一个变量控制的,它可由内核中的ip- sysctl函数设置。默认值取决于你的内存大小,128MB可以包含8192条目录,256MB是16376条。你也可以在&/proc/sys/net/ipv4/ip_conntrack_max里查看、设置。
就象前面说的,包的状态依据IP所包含的协议不同而不同,但在内核外部,也就是用户空间里,只有4种 状态:NEW,ESTABLISHED,RELATED&和INVALID。它们主要是和状态匹配一起使用。下面就简要地介绍以下这几种状态:
Table 4-1. 数据包在用户空间的状态
State(状态)
Explanation(注释)
NEW说明这个包是我们看到的第一个 包。意思就是,这是conntrack模块看到的某个连接第一个包,它即将被匹配了。比如,我们看到一个SYN 包,是我们所留意的连接的第一个包,就要匹配它。第一个包也可能不是SYN包,但它仍会被认为是NEW状态。这样做有时会导致一些问题,但对某些情况是有非常大的帮助的。例如,在
我们想恢复某条从其他的防火墙丢失的连接时,或者某个连接已经超时,但实际上并未关闭时。
ESTABLISHED
ESTABLISHED已经注意到两个方向上 的数据传输,而且会继续匹配这个连接的包。处于ESTABLISHED状态的连接是非常容 易理解的。只要发送并接到应答,连接就是ESTABLISHED的了。一个连接要从NEW变
为ESTABLISHED,只需要接到应答包即可,不管这个包是发往防火墙的,还是要由防 火墙转发的。ICMP的错误和重定向等信息包也被看作是ESTABLISHED,只要它们是我 们所发出的信息的应答。
RELATED是个比较麻烦的状态。当一 个连接和某个已处于ESTABLISHED状态的连接有关系时,就被认为是RELATED的了。换句话说,一个连接要想 是RELATED的,首先要有一个ESTABLISHED的连接。这个ESTABLISHED连接再产生一个主连接之外的连接,这 个新的连接就是RELATED的了,当然前提是conntrack模块要能理解RELATED。ftp是个很好的例子,FTP-data
连接就是和FTP-control有RELATED的。还有其他的例子,比如,通过IRC的DCC连接。有了这个状态,ICMP应 答、FTP传输、DCC等才能穿过防火墙正常工作。注意,大部分还有一些UDP协议都依赖这个机制。这些协议 是很复杂的,它们把连接信息放在数据包里,并且要求这些信息能被正确理解。
INVALID说明数据包不能被识别属于 哪个连接或没有任何状态。有几个原因可以产生这种情况,比如,内存溢出,收到不知属于哪个连接的ICMP 错误信息。一般地,我们DROP这个状态的任何东西。
这些状态可以一起使用,以便匹配数据包。这可以使我们的防火墙非常强壮和有效。以前,我们经常打 开1024以上的所有端口来放行应答的数据。现在,有了状态机制,就不需再这样了。因为我们可以只开放那 些有应答数据的端口,其他的都可以关闭。这样就安全多了。
本节和下面的几节,我们来详细讨论这些状态,以及在TCP、UDP和ICMP这三种基本的协议里怎样操作它 们。当然,也会讨论其他协议的情况。我们还是从TCP入手,因为它本身就是一个带状态的协议,并且具有 很多关于iptables状态机制的详细信息。
一个TCP连接是经过三次握手协商连接信息才建立起来的。整个会话由一个SYN包开始,然后是一个 SYN/ACK包,最后是一个ACK包,此时,会话才建立成功,能够发送数据。最大的问题在于连接跟踪怎样控制 这个过程。其实非常简单。
默认情况下,连接跟踪基本上对所有的连接类型做同样的操作。看看下面的图片,我们就能明白在连接 的不同阶段,流是处于什么状态的。就如你看到的,连接跟踪的代码不是从用户的观点来看待TCP连接建立 的流程的。连接跟踪一看到SYN包,就认为这个连接是NEW状态,一看到返回的SYN/ACK包,就认为连接是 ESTABLISHED状态。如果你仔细想想第二步,应该能理解为什么。有了这个特殊处理,NEW和ESTABLISHED包 就可以发送出本地网络,且只有ESTABLISHED的连接才能有回应信息。如果把整个建立连接的过程中传输的
数据包都看作NEW,那么三次握手所用的包都是NEW状态的,这样我们就不能阻塞从外部到本地网络的连接 了。因为即使连接是从外向内的,但它使用的包也是NEW状态的,而且为了其他连接能正常传输,我们不得 不允许NEW状态的包返回并进入防火墙。更复杂的是,针对TCP连接内核使用了很多内部状态,它们的定义在&的21-23页。但好在我们在用 户空间用不到。后面我们会详细地介绍这些内容。
正如你看到的,以用户的观点来看,这是很简单的。但是,从内核的角度看这一块还有点困难的。我们 来看一个例子。认真考虑一下在/proc/net/ip_conntrack里,连接的状态是如何 改变的。
6 117 SYN_SENT src=192.168.1.5 dst=192.168.1.35 sport=1031 \
dport=23 [UNREPLIED] src=192.168.1.35 dst=192.168.1.5 sport=23 \
dport=1031 use=1
从上面的记录可以看出,SYN_SENT状态被设置了,这说明连接已经发出一个SYN包,但应答还没发送过 来,这可从[UNREPLIED]标志看出。
6 57 SYN_RECV src=192.168.1.5 dst=192.168.1.35 sport=1031 \
dport=23 src=192.168.1.35 dst=192.168.1.5 sport=23 dport=1031 \
现在我们已经收到了相应的SYN/ACK包,状态也变为SYN_RECV,这说明最初发出的SYN包已正确传输,并 且SYN/ACK包也到达了防火墙。 这就意味着在连接的两方都有数据传输,因此可以认为两个方向都有相应的 回应。当然,这是假设的。
6 431999 ESTABLISHED src=192.168.1.5 dst=192.168.1.35 \
sport=1031 dport=23 src=192.168.1.35 dst=192.168.1.5 \
sport=23 dport=1031 use=1
现在我们发出了三步握手的最后一个包,即ACK包,连接也就进入ESTABLISHED状态了。再传输几个数据 包,连接就是[ASSURED]的了。
下面介绍TCP连接在关闭过程中的状态。
如上图,在发出最后一个ACK包之前,连接(指两个方向)是不会关闭的。注意,这只是针对一般的情 况。连接也可以通过发送关闭,这用在拒绝一个连接的时候。在RST包发送之后,要经过预先设定的一段时 间,连接才能断掉。
连接关闭后,进入TIME_WAIT状态,缺省时间是2分钟。之所以留这个时间,是为了让数据包能完全通过 各种规则的检查,也是为了数据包能通过拥挤的路由器,从而到达目的地。
如果连接是被RST包重置的,就直接变为CLOSE了。这意味着在关闭之前只有10秒的默认时间。RST包是不 需要确认的,它会直接关闭连接。针对TCP连接,还有其他一些状态我们没有谈到。下面给出一个完整的状 态列表和超时值。
Table 4-2. 内部状态
Timeout value
30 minutes
ESTABLISHED
60 seconds
10 seconds
CLOSE_WAIT
30 seconds
这些值不是绝对的,可以随着内核的修订而变化,也可以通过/proc/sys/net/ipv4/netfilter/ip_ct_tcp_*的变量更改。这些默认值都是经过实践 检验的。它们的单位是jiffies(百分之一秒),所以3000就代表30秒。
注意状态机制在用户空间里的部分不会查看TCP包的标志位(也就是说TCP标志对它而言是透明 的)。如果我们想让NEW状态的包通过防火墙,就要指定NEW状态,我们理解的NEW状态的意思就是指SYN包, 可是iptables又不查看这些标志位。这就是问题所在。有些没有设置SYN或ACK的包,也会被看作NEW状态 的。这样的包可能会被冗余防火墙用到,但对只有一个防火墙的网络是很不利的(可能会被攻击哦)。那我 们怎样才能不受这样的包的影响呢?你可以使用&里的命令。还有一个办法,就是安装patch-o-matic里的tcp-window-tracking扩展功能,它可以使防火墙能
根据TCP的一些标志位来进行状态跟踪。
UDP连接是无状态的,因为它没有任何的连接建立和关闭过程,而且大部分是无序列号的。以某个顺序收 到的两个数据包是无法确定它们的发出顺序的。但内核仍然可以对UDP连接设置状态。我们来看看是如何跟 踪UDP连接的,以及conntrack的相关记录。
从上图可以看出,以用户的角度考虑,UDP连接的建立几乎与TCP的一样。虽然conntrack信息看起来有点 儿不同,但本质上是一样的。下面我们先来看看第一个UDP包发出后的conntrack记录。
17 20 src=192.168.1.2 dst=192.168.1.5 sport=137 dport=1025 \
[UNREPLIED] src=192.168.1.5 dst=192.168.1.2 sport=1025 \
dport=137 use=1
从前两个值可知,这是一个UDP包。第一个是协议名称,第二个是协议号,第三个是此状态的生存时间, 默认是30秒。接下来是包的源、目地址和端口,还有期待之中回应包的源、目地址和端口。[UNREPLIED]标 记说明还未收到回应。
17 170 src=192.168.1.2 dst=192.168.1.5 sport=137 \
dport=1025 src=192.168.1.5 dst=192.168.1.2 sport=1025 \
dport=137 use=1
一旦收到第一个包的回应,[UNREPLIED]标记就会被删除,连接就被认为是ESTABLISHED的,但在记录里 并不显示ESTABLISHED标记。相应地,状态的超时时间也变为180秒了。在本例中,只剩170秒了,10秒后, 就会减少为160秒。有个东西是不可少的,虽然它可能会有些变化,就是前面提过的[ASSURED]。要想变为 [ASSURED]状态,连接上必须要再有些流量。
17 175 src=192.168.1.5 dst=195.22.79.2 sport=1025 \
dport=53 src=195.22.79.2 dst=192.168.1.5 sport=53 \
dport=1025 [ASSURED] use=1
可以看出来,[ASSURED]状态的记录和前面的没有多大差别,除了标记由[UNREPLIED]变成[ASSURED]。如 果这个连接持续不了180秒,那就要被中断。180秒是短了点儿,但对大部分应用足够了。只要遇到这个连接 的包穿过防火墙,超时值就会被重置为默认值,所有的状态都是这样的。
ICMP也是一种无状态协议,它只是用来控制而不是建立连接。ICMP包有很多类型,但只有四种类型有应 答包,它们是回显请求和应答(Echo request and reply),时间戳请求和应答(Timestamp request and reply),信息请求和应答(Information request and reply),还有地址掩码请求和应答(Address mask request and reply),这些包有两种状态,NEW和ESTABLISHED&。时间戳请求和信息请求已经废除不用了,回显请求还是常用的,比如ping命令就用的到,地址掩码请
求不太常用,但是可能有时很有用并且值得使用。看看下面的图,就可以大致了解ICMP连接的NEW和ESTABLISHED状态了。
如图所示,主机向目标发送一个回显请求,防火墙就认为这个包处于NEW状态。 目标回应一个回显应答,防火墙就认为包处于ESTABLISHED了。当回显请求被发送 时,ip_conntrack里就有这样的记录了:
1 25 src=192.168.1.6 dst=192.168.1.10 type=8 code=0 \
id=33029 [UNREPLIED] src=192.168.1.10 dst=192.168.1.6 \
type=0 code=0 id=33029 use=1
可以看到,ICMP的记录和TCP、UDP的有点区别,协议名称、超时时间和源、目地址都一样,不同之处在 于没有了端口,而新增了三个新的字段:type,code和id。字段type说明ICMP的类型。code说明ICMP的代
码,这些代码在附录里有说明。id是ICMP包的ID。每个ICMP包被发送时都被分配一个ID,接受方把同样的ID 分配给应答包,这样发送方能认出是哪个请求的应答。
[UNREPLIED]的含义和前面一样,说明数的传输只发生在一个方向上,也就是说未收到应答。再往后,是 应答包的源、目地址,还有相应的三个新字段,要注意的是type和code是随着应答包的不同而变化的,id和 请求包的一样。
和前面一样,应答包被认为是ESTABLISHED的。然而,在应答包之后,这个ICMP 连接就不再有数据传输了。所以,一旦应答包穿过防火墙,ICMP的连接跟踪记录就被销毁了。
以上各种情况,请求被认为NEW,应答是ESTABLISHED。 换句话说,就是当防火墙看到一个请求包时,就认为连接处于NEW状态,当有应答 时,就是ESTABLISHED状态。
注意,应答包必须符合一定的标准,连接才能被认作established的,每个传输类型都是这样。
ICMP的缺省超时是30秒,可以在/proc/sys/net/ipv4/netfilter/ip_ct_icmp_timeout中修改。这个值是比较合适 的,适合于大多数情况。
ICMP的另一个非常重要的作用是,告诉UDP、TCP连接或正在努力建立的连接发生了什么,这时ICMP应答 被认为是RELATED的。主机不可达和网络不可达就是这样的例子。当试图连接某台机 子不成功时(可能那台机子被关上了),数据包所到达的最后一台路由器就会返回以上的ICMP信息,它们就 是RELATED的,如下图:
我们发送了一个SYN包到某一地址,防火墙认为它的状态是NEW。但是,目标网络 有问题不可达,路由器就会返回网络不可达的信息,这是RELATED的。连接跟踪会认 出这个错误信息是哪个连接的,连接会中断,同时相应的记录删除会被删除。
当UDP连接遇到问题时,同样会有相应的ICMP信息返回,当然它们的状态也是RELATED&,如下图:
我们发送一个UDP包,当然它是NEW的。但是,目标网络被一些防火墙或路由器所 禁止。我们的防火墙就会收到网络被禁止的信息。防火墙知道它是和哪个已打开的UDP连接相关的,并且把 这个信息(状态是RELATED)发给它,同时,把相应的记录删除。客户机收到网络被 禁止的信息,连接将被中断。
有时,conntrack机制并不知道如何处理某个特殊的协议,尤其是在它不了解这个协议或不知道协议如何 工作时,比如,NETBLT,MUX还有EGP。这种情况下,conntrack使用缺省的操作。这种操作很象对UDP连接的 操作,就是第一个包被认作NEW,其后的应答包等等数据都是&ESTABLISHED。
使用缺省操作的包的超时值都是一样的,600秒,也就是10分钟。当然,这个值可以通过/proc/sys/net/ipv4/netfilter/ip_ct_generic_timeout更改,以便适应你的通信 量,尤其是在耗时较多、流量巨大的情况下,比如使用卫星等。
有些协议比其他协议更复杂,这里复杂的意思是指连接跟踪机制很难正确地跟踪它们,比如,ICQ、IRC 和FTP,它们都在数据包的数据域里携带某些信息,这些信息用于建立其他的连接。因此,需要一些特殊的 helper来完成工作。
下面以FTP作为例子。FTP协议先建立一个单独的连接——FTP控制会话。我们通过这个连接发布命令,其 他的端口就会打开以便传输和这个命令相关的数据。这些连接的建立方法有两种:主动模式和被动模式。先 看看主动模式,FTP客户端发送端口和IP地址信 息给服务器端,然后,客户端打开这个端口,服务器端从它自己的20端口(FTP-Data端口号)建立与这个端 口的连接,接着就可以使用这个连接发送数据了。
问题在于防火墙不知道这些额外的连接(相对于控制会话而言),因为这些连接在建立时的磋商信息都 在协议数据包的数据域内,而不是在可分析的协议头里。因此,防火墙就不知道是不是该放这些从服务器到 客户机的连接过关。
解决的办法是为连接跟踪模块增加一个特殊的helper,以便能检测到那些信息。这样,那些从FTP服务器 到客户机的连接就可以被跟踪了,状态是RELATED,过程如下图所示:
被动FTP工作方式下,data连接的建立过程和主动FTP的相反。客户机告诉服务器需要某些数据,服务器 就把地址和端口发回给客户机,客户机据此建立连接接受数据。如果FTP服务器在防火墙后面,或你对用户 限制的比较严格,只允许他们访问HTTP和FTP,而封闭了其他所有端口,为了让在Internet是的客户机能访 问到FTP,也需要增加上面提到的helper。下面是被动模式下data连接的建立过程:
有些conntrack helper已经包含在内核中,在写这篇文章时,FTP和IRC已有了相应的conntrack helper。如果在内核里没有你想要的helper,可以到iptables用户空间的patch-o-matic目录中看看,那里 有很多的helper,比如针对ntalk或H.323协议的等等。如果没找到,还有几个选择:可以查查iptables的 CVS,或者联系问问有没有你要的。还不行的话,只有你
自己写了,我可以给你介绍一篇好文章,,连接放在附录里。
Conntrack helper即可以被静态地编译进内核,也可以作为模块,但要用下面的命令装载:
modprobe ip_conntrack_*
注意连接跟踪并不处理NAT,因此要对连接做NAT就需要增加相应的模块。比如,你想NAT并跟踪FTP连 接,除了FTP的相应模块,还要有NAT的模块。所有的NAT helper名字都是以ip_nat_开头的,这是一个命名 习惯:FTP NAT helper叫做ip_nat_ftp,IRC的相应模块就是ip_nat_irc。conntrack helper 的命名也遵循 一样的习惯:针对IRC的conntrack helper叫ip_conntrack_irc,FTP的叫作ip_conntrack_ftp。
iptables提供了两个很有用的工具用来处理大规则集:&iptables-save和iptables-restore,它们把规则存入一个与标准脚本代码只有 细微查别的特殊格式的文件中,或从中恢复规则。
使用iptables-save和iptables-restore的一个最重要的 原因是,它们能在相当程度上提高装载、保存规则的速度。使用脚本更改规则的问题是,改动每个规则都要 调运命令iptables,而每一次调用iptables,它首先要把Netfilter内核空间中的整个规则集都提取出来,
然后再插入或附加,或做其他的改动,最后,再把新的规则集从它的内存空间插入到内核空间中。这会花费 很多时间。
为了解决这个问题,可以使用命令iptables-save和restore&。&iptables-save用来把规则集保存到一个特殊格式的文本文件里,而iptables-restore是用来把这个文件重新装入内核空间的。这两个命令最好的地方在于
一次调用就可以装载和保存规则集,而不象脚本中每个规则都要调用一次iptables。&iptables-save运行一次就可以把整个规则集从内核里提取出来,并保存到文件里,而iptables-restore每次装入一个规则表。换句话说,对于一个很大的规则集,如果用脚 本来设置,那这些规则就会反反复复地被卸载、安装很多次,而我们现在可以把整个规则集一次就保存下
来,安装时则是一次一个表,这可是节省了大量的时间。
如果你的工作对象是一组巨大的规则,这两个工具是明显的选择。当然,它们也有不足之处,下面的章 节会详细说明。
iptables-restore能替代所有的脚本来设置规则吗?不,到现在为止不行,很可能永远都不 行。iptables-restore的主要不足是不能用来做复杂的规则集。例如,我们想在计算机启动时获取连接的动 态分配的IP地址,然后用在脚本里。这一点,用iptables-restore来实现,或多或少是不可能的。
一个可能的解决办法是写一个小脚本来获取那个IP地址,并在iptables-restore调用的配置文件中设置 相应的关键字,然后用获取的IP值替换关键字。你可以把更改后的配置文件存到一个临时文件中,再由 iptables-restore使用它。然而这会带来很多问题,并且你不能用iptables-save来保存带关键字的配置文 件。此法较笨。
另一个办法是先装入iptables-restore文件,再运行一个特定的脚本把动态的规则装入。其实,这也是 较笨的方法。iptables-restore并不适合于使用动态IP的场合,如果你想在配置文件里使用选项来实现不同 的要求,iptables-restore也不适用。
iptables-restore和iptables-save还有一个不足,就是功能不够齐全。因为使用的人不是太多,所以发 现这个问题的人也不多,还有就是一些match和target被引用时考虑不细致,这可能会出现我们预期之外的 行为。 尽管存在这些问题,我还是强烈建议你使用它们,因为它们对于大部分规则集工作的还是很好的, 只要在规则中别包含那些新的都不知如何使用的match和target。
iptables-save用来把当前的规则存入一个文件里以备iptables-restore使用。它的使用很简单,只有两 个参数:
iptables-save&[-c] [-t&table]
参数-c的作用是保存包和字节计数器的值。这可以使我们在重启防火墙后不丢失 对包和字节的统计。带-c参数的iptables-save命令使重启 防火墙而不中断统计记数程序成为可能。这个参数默认是不使用的。
参数-t指定要保存的表,默认是保存所有的表。下面给出未装载任何规则的情况 下iptables-save的输出。
# Generated by iptables-save v1.2.6a on Wed Apr 24 10:19:17 2002
:INPUT ACCEPT [404:19766]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [530:43376]
# Completed on Wed Apr 24 10:19:17 2002
# Generated by iptables-save v1.2.6a on Wed Apr 24 10:19:17 2002
:PREROUTING ACCEPT [451:22060]
:INPUT ACCEPT [451:22060]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [594:47151]
:POSTROUTING ACCEPT [594:47151]
# Completed on Wed Apr 24 10:19:17 2002
# Generated by iptables-save v1.2.6a on Wed Apr 24 10:19:17 2002
:PREROUTING ACCEPT [0:0]
:POSTROUTING ACCEPT [3:450]
:OUTPUT ACCEPT [3:450]
# Completed on Wed Apr 24 10:19:17 2002
我们来解释一下这个输出格式。#后面的是注释。表都以*&table-name&开始,例如*mangle。每个表都包含链和规则,链的详细说明是:&chain-name& &chain-policy& [&packet-counter&:&byte-counter&]。例如,链的名字是 PREROUTING,策略是ACCEPT,然后是包记数器和字节计数器,这两个计数器和iptables
-L -v输出中用到的计数器一样。每个表的描述都以关键字COMMIT结 束,它说明在这一点,就要把规则装入内核了。
上面的例子是最基本的,我想用一个简短的例子说明会更好,其中包含一个非常小的规则集。iptables-save的输出如下:
# Generated by iptables-save v1.2.6a on Wed Apr 24 10:19:55 2002
:INPUT DROP [1:229]
:FORWARD DROP [0:0]
:OUTPUT DROP [0:0]
-A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT
-A FORWARD -i eth0 -m state --state RELATED,ESTABLISHED -j ACCEPT
-A FORWARD -i eth1 -m state --state NEW,RELATED,ESTABLISHED -j ACCEPT
-A OUTPUT -m state --state NEW,RELATED,ESTABLISHED -j ACCEPT
# Completed on Wed Apr 24 10:19:55 2002
# Generated by iptables-save v1.2.6a on Wed Apr 24 10:19:55 2002
:PREROUTING ACCEPT [658:32445]
:INPUT ACCEPT [658:32445]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [891:68234]
:POSTROUTING ACCEPT [891:68234]
# Completed on Wed Apr 24 10:19:55 2002
# Generated by iptables-save v1.2.6a on Wed Apr 24 10:19:55 2002
:PREROUTING ACCEPT [1:229]
:POSTROUTING ACCEPT [3:450]
:OUTPUT ACCEPT [3:450]
-A POSTROUTING -o eth0 -j SNAT --to-source 195.233.192.1
# Completed on Wed Apr 24 10:19:55 2002
每个命令前都有包和字节计数器,这说明使用了-c参数。除了有计数器,其他的 都和普通的脚本一样。现在的问题是怎么把输出保存到文件中。非常简单,既然使用linux,你应该早就知 道了,用重定向啊:
iptables-save -c & /etc/iptables-save
这就会把规则集保存到/etc/iptables-save中,而且还有计数器。
iptables-restore用来装载由iptables-save保存的规则 集。不幸的是,它只能从标准输入接受输入,而不能从文件接受。下面是它的事方法:
iptables-restore&[-c] [-n]
参数-c要求装入包和字节计数器。如果你用iptables-save保存了计数器,现在 想重新装入,就必须用这个参数。它的另一种较长的形式是--counters。
参数-n告诉iptables-restore不要覆盖已有的表或表内的规则。默认情况是清除 所有已存的规则。这个参数的长形式是--noflush。
用iptables-restore装载规则有好几种方法,我们来看看最简单、最一般的:
这样规则集应该正确地装入内核并正常工作了。如果有问题,你就要除措了。
本章将详细地讨论如何构件你自己的规则。规则就是指向标,在一条链上,对不同的连接和数据包阻塞 或允许它们去向何处。插入链的每一行都是一条规则。我们也会讨论基本的matche及其用法,还有各种各样 的target,以及如何建立我们自己的target(比如,一个新的子链)。
我们已经解释了什么是规则,在内核看来,规则就是决定如何处理一个包的语句。如果一个包符合所有 的条件(就是符合matche语句),我们就运行target或jump指令。书写规则的语法格式是:
iptables&[-t&table] command [match] [target/jump]
对于这个句法没什么可说的,但注意target指令必须在最后。为了易读,我们一般用这种语法。总之, 你将见到的大部分规则都是按这种语法写的。因此,如果你看到别人写的规则,你很可能会发现用的也是这 种语法,当然就很容易理解那些规则了。
如果你不想用标准的表,就要在[table]处指定表名。一般情况下没有必要指定使用的表,因为iptables 默认使用filter表来执行所有的命令。也没有必要非得在这里指定表名,实际上几乎可在规则的任何地方。 当然,把表名在开始处已经是约定俗成的标准。
尽管命令总是放在开头,或者是直接放在表名后面,我们也要考虑考虑到底放在哪儿易读。command告诉 程序该做什么,比如:插入一个规则,还是在链的末尾增加一个规则,还是删除一个规则,下面会仔细地介 绍。
match细致地描述了包的某个特点,以使这个包区别于其它所有的包。在这里,我们可以指定包的来源IP 地址,网络接口,端口,协议类型,或者其他什么。下面我们将会看到许多不同的match。
最后是数据包的目标所在。若数据包符合所有的match,内核就用target来处理它,或者说把包发往 target。比如,我们可以让内核把包发送到当前表中的其他链(可能是我们自己建立的),或者只是丢弃这 个包而没有什么处理,或者向发送者返回某个特殊的应答。下面有详细的讨论。
选项-t用来指定使用哪个表,它可以是下面介绍的表中的任何一个,默认的是 filter表。注意,下面的介绍只是章节的摘要。
Table 6-1. Tables
Table (表名)
Explanation (注释)
nat表的主要用处是网络地址转换,即Network Address Translation,缩写为NAT。做过NAT操作的数据包的地址就被改变了,当然这种改变是根据我们的规则进行 的。属于一个流的包只会经过这个表一次。如果第一个包被允许做NAT或Masqueraded,那么余下的包都会自 动地被做相同的操作。也就是说,余下的包不会再通过这个表,一个一个的被NAT,而是自动地完成。这就 是我们为什么不应该在这个表中做任何过滤的主要原因,对这一点,后面会有更加详细的讨论。PREROUTING
链的作用是在包刚刚到达防火墙时改变它的目的地址,如果需要的话。OUTPUT链改变本地产生的包的目的地 址。POSTROUTING链在包就要离开防火墙之前改变其源地址。
这个表主要用来mangle数据包。我们可以改变不同的包及包 头的内容,比如&TTL,TOS或MARK。 注意MARK并没有真正地改动数据包,它只是在内核空间为包设了一个标记。防火墙
内的其他的规则或程序(如tc)可以使用这种标记对包进行过滤或高级路由。这个表有五个内建的链:PREROUTING,POSTROUTING,&OUTPUT,INPUT和&FORWARD。PREROUTING在包进入防火墙之后、路由判断之前改变 包,POSTROUTING是在所有路由判断之后。&OUTPUT在确定包的目的之前更改数据包。INPUT在包被路由到本地
之后,但在用户空间的程序看到它之前改变包。FORWARD在最初的路由判 断之后、最后一次更改包的目的之前mangle包。注意,mangle表不能做任何NAT,它只是改变数据包的&TTL,TOS或MARK,而不是其源目地
址。NAT是在nat表中操作的。
filter表是专门过滤包 的,内建三个链,可以毫无问题地对包进行DROP、LOG、ACCEPT和REJECT等操作。FORWARD&链过滤所有不是本地产生的并且目的地不是本地(所谓本地就是防火墙了)的包,而&INPUT恰恰针对那些目的地是本地的包。OUTPUT&是用来过滤所有本地生成的包的。
上面介绍了三个不同的表的最基本的内容。你应该知道它们的使用目的完全不同,还要清楚每一条链的 使用。如果你不了解,就可能会在防火墙上留下漏洞,给人以可乘之机。在章节&中,我们已详细地讨论了这些必备的的表和链。如果你 没有完全理解包是怎样通过这些表、链的话,我建议你回过头去再仔细看看。
在这一节里,我们将要介绍所有的command以及它们的用途。command指定iptables&对我们提交的规则要做什么样的操作。这些操作可能是在某个表里增加或删除一些东西,或做点儿其他 什么。以下是iptables可用的command(要注意,如不做说明,默认表的是 filter表。):
Table 6-2. Commands
-A,&--append
iptables -A INPUT ...
Explanation
在所选择的链末添加规则。当源地址或目的地址是以名字而 不是ip地址的形式出现时,若这些名字可以被解析为多个地址,则这条规则会和所有可用的地址结合。
-D,&--delete
iptables -D INPUT --dport 80 -j DROP或iptables -D INPUT 1
Explanation
从所选链中删除规则。有两种方法指定要删除的规则:一是 把规则完完整整地写出来,再就是指定规则在所选链中的序号(每条链的规则都各自从1被编号)。
-R,&--replace
iptables -R INPUT 1 -s 192.168.0.1 -j DROP
Explanation
在所选中的链里指定的行上(每条链的规则都各自从1被编 号)替换规则。它主要的用处是试验不同的规则。当源地址或目的地址是以名字而不是ip地址的形式出现 时,若这些名字可以被解析为多个地址,则这条command会失败。
-I,&--insert
iptables -I INPUT 1 --dport 80 -j ACCEPT
Explanation
根据给出的规则序号向所选链中插入规则。如果序号为1, 规则会被插入链的头部,其实默认序号就是1。
-L,&--list
iptables -L INPUT
Explanation
显示所选链的所有规则。如果没有指定链,则显示指定表中 的所有链。如果什么都没有指定,就显示默认表所有的链。精确输出受其它参数影响,如-n和-v等参数,下面会介绍。
-F,&--flush
iptables -F INPUT
Explanation
清空所选的链。如果没有指定链,则清空指定表中的所有 链。如果什么都没有指定,就清空默认表所有的链。当然,也可以一条一条地删,但用这个command会快些。
-Z,&--zero
iptables -Z INPUT
Explanation
把指定链(如未指定,则认为是所有链)的所有计数器归 零。
-N,&--new-chain
iptables -N allowed
Explanation
根据用户指定的名字建立新的链。上面的例子建立了一个名 为allowed的链。注意,所用的名字不能和已有的链、target同名。
-X,&--delete-chain
iptables -X allowed
Explanation
删除指定的用户自定义链。这个链必须没有被引用,如果被 引用,在删除之前你必须删除或者替换与之有关的规则。如果没有给出参数,这条命令将会删除默认表所有 非内建的链。
-P,&--policy
iptables -P INPUT DROP
Explanation
为链设置默认的target(可用的是DROP&和ACCEPT,如果还有其它的可用,请告诉我),这个target称作策略。所有不 符合规则的包都被强制使用这个策略。只有内建的链才可以使用规则。但内建的链和用户自定义链都不能被
作为策略使用,也就是说不能象这样使用:iptables -P INPUT allowed(或者是内建的链)。
-E,&--rename-chain
iptables -E allowed disallowed
Explanation
对自定义的链进行重命名,原来的名字在前,新名字在后。 如上,就是把allowed改为disallowed。这仅仅是改变 链的名字,对整个表的结构、工作没有任何影响。
在使用iptables时,如果必须的参数没有输入就按了回车,那么它就会给出一些 提示信息:告诉你需要哪些参数等等。iptables的选项-v用来显示iptables的版 本,-h给出语法的简短说明。。下面将要介绍的就是部分选项,还有它们的作用。
Table 6-3. Options
Option(选项)
-v,&--verbose(详细的)
可用此选项的命令
--list,&--append,&--insert,&--delete,&--replace
Explanation(说明)
这个选项使输出详细化,常与--list&连用。与--list连用时,输出中包括网络接口的地址、规则的选项、TOS掩码、 字节和包计数器,其中计数器是以K、M、G(这里用的是10的幂而不是2的幂哦)为单位的。如果想知道到底
有多少个包、多少字节,还要用到选项-x,下面会介绍。如果-v&和--append、--insert、--delete&或--replace连用,iptables会输出详细的信息告诉你规则是如何被解释的、是
否正确地插入等等。
-x,&--exact(精确的)
Commands used with
Explanation
使--list输出中的计数器显示准确 的数值,而不用K、M、G等估值。注意此选项只能和--list连用。
-n,&--numeric(数值)
Commands used with
Explanation
使输出中的IP地址和端口以数值的形式显示,而不是默认的 名字,比如主机名、网络名、程序名等。注意此选项也只能和--list连用。
--line-numbers
Commands used with
Explanation
又是一个只能和--list连用的选 项,作用是显示出每条规则在相应链中的序号。这样你可以知道序号了,这对插入新规则很有用哦。
-c,&--set-counters
Commands used with
--insert,&--append,&--replace
Explanation
在创建或更改规则时设置计数器,语法如下:--set-counters 20 4000,意思是让内核把包计数器设为20,把字节计数器设为4000。
--modprobe
Commands used with
Explanation
此选项告诉iptables探测并装载要使用的模块。这是非常有 用的一个选项,万一modprobe命令不在搜索路径中,就要用到了。有了这个选项, 在装载模块时,即使有一个需要用到的模块没装载上,iptables也知道要去搜索。
这一节,我们会详细讨论一些matche,我把它们归为五类。第一类是generic matches(通用的匹配),适用于所有的规则;第二类是TCP matches,顾名思 义,这只能用于TCP包;第三类是UDP
matches, 当然它只能用在UDP包上了;第四类是ICMP matches&,针对ICMP包的;第五类比较特殊,针对的是状态(state),所有 者(owner)和访问的频率限制(limit)等,它们已经被分到更多的小类当中,尽管它们并不是完全不同 的。我希望这是一种大家都容易理解的分类。
无论我们使用的是何种协议,也不管我们又装入了匹配的何种扩展,通用匹配都使可用的。也就是说, 它们可以直接使用,而不需要什么前提条件,在后面你会看到,有很多匹配操作是需要其他的匹配作为前提 的。
Table 6-4. Generic matches
-p,&--protocol
iptables -A INPUT -p tcp
Explanation
匹配指定的协议。指定协议的形式有以下几种:
1、名字,不分大小写,但必须是在中定 义的。
2、可以使用它们相应的整数值。例如,ICMP的值是1,TCP是6,UDP是17。
3、缺省设置,ALL,相应数值是0,但要注意这只代表匹配TCP、UDP、ICMP,而不是中定义的所有协议。
4、可以是协议列表,以英文逗号为分隔符,如:udp,tcp
5、可以在协议前加英文的感叹号表示取反,注意有空格,如:&--protocol ! tcp&表示非tcp协议,也就是UDP和ICMP。可以看出这个取反的范围只是TCP、UDP和ICMP。
-s,&--src,&--source
iptables -A INPUT -s 192.168.1.1
Explanation
以IP源地址匹配包。地址的形式如下:
1、单个地址,如192.168.1.1,也可写成&192.168.1.1/255.255.255.255或192.168.1.1/32
2、网络,如192.168.0.0/24,或&192.168.0.0/255.255.255.0
3、在地址前加英文感叹号表示取反,注意空格,如--source ! 192.168.0.0/24&表示除此地址外的所有地址
4、缺省是所有地址
-d,&--dst,&--destination
iptables -A INPUT -d 192.168.1.1
Explanation
以IP目的地址匹配包。地址的形式和&-- source完全一样。
-i,&--in-interface
iptables -A INPUT -i eth0
Explanation
以包进入本地所使用的网络接口来匹配包。要注意这个匹配 操作只能用于INPUT,FORWARD和&PREROUTING这三个链,用在其他任何地方都会提示错误信息。指定接口有一下方 法:
1、指定接口名称,如:eth0、ppp0等
2、使用通配符,即英文加号,它代表字符数字串。若直接用一个加号,即iptables -A INPUT -i +表示匹配所有的包,而不考虑使用哪个接口。这也是不指定接口的默认行为。通配符还 可以放在某一类接口的后面,如:eth+表示所有Ethernet接口,也就是说,匹配所有从Ethernet接口进入的 包。
3、在接口前加英文感叹号表示取反,注意空格,如:-i ! eth0意思是匹配来自 除eth0外的所有包。
-o,&--out-interface
iptables -A FORWARD -o eth0
Explanation
以包离开本地所使用的网络接口来匹配包。使用的范围和指 定接口的方法与--in-interface完全一样。
-f,&--fragment
iptables -A INPUT -f
Explanation
用来匹配一个被分片的包的第二片或及以后的部分。因为它 们不包含源或目的地址,或ICMP类型等信息,其他规则无法匹配到它,所以才有这个匹配操作。要注意碎片 攻击哦。这个操作也可以加英文感叹号表示取反,但要注意位置,如:! -f&。取反 时,表示只能匹配到没有分片的包或者是被分片的包的第一个碎片,其后的片都不行。现在内核有完善的碎
片重组功能,可以防止碎片攻击,所以不必使用取反的功能来防止碎片通过。如果你使用连接跟踪,是不会 看到任何碎片的,因为在它们到达任何链之前就被处理过了。
这种匹配操作是自动地或隐含地装载入内核的。例如我们使用--protocol tcp&时,不需再装入任何东西就可以匹配只有IP包才有的一些特点。现在有三种隐含的匹配针对三种不同的协 议,即TCP matches,UDP
matches和&ICMP matches。它们分别包括一套只适用于相应协议的判别标准。相对于隐含匹配的是显式匹配,它们 必须使用-m或--match被明确地装载,而不能是自动地或隐
含地,下一节会介绍到。
TCP matches只能匹配TCP包或流的细节,它们必须有--protocol tcp作为前提条 件。
Table 6-5. TCP matches
--sport,&--source-port
iptables -A INPUT -p tcp --sport 22
Explanation
基于TCP包的源端口来匹配包,端口的指定形式如下:
1、不指定此项,则暗示所有端口。
2、使用服务名或端口号,但名字必须是在&中定义的,因为iptables从这个文件里查找相应的端口号。从这可以看出,使用端口号会使规则装入快一点 儿,当然,可读性就差些了。但是如果你想写一个包含200条或更多规则的规则集,那你还是老老实实地用 端口号吧,时间是主要因素(在一台稍微慢点儿地机子上,这最多会有10秒地不同,但要是1000条、10000
3、可以使用连续的端口,如:--source-port 22:80这表示从22到80的所有端 口,包括22和80。如果两个号的顺序反了也没关系,如:--source-port 80:22这和&--source-port
22:80的效果一样。
4、可以省略第一个号,默认第一个是0,如:--source-port :80表示从0到80的 所有端口。
5、也可以省略第二个号,默认是65535,如:--source-port 22:表示从22到 65535的所有端口
6、在端口号前加英文感叹号表示取反,注意空格,如:--source-port ! 22表 示除22号之外的所有端口;--source-port ! 22:80表示从22到80(包括22和80)之 外的所有端口。
注意:这个匹配操作不能识别不连续的端口列表,如:--source-port ! 22, 36, 80&这样的操作是由后面将要介绍的多端口匹配扩展来完成的。
--dport,&--destination-port
iptables -A INPUT -p tcp --dport 22
Explanation
基于TCP包的目的端口来匹配包,端口的指定形式和--sport完全一样。
--tcp-flags
Explanation
匹配指定的TCP标记。有两个参数,它们都是列表,列表内 部用英文的逗号作分隔符,这两个列表之间用空格分开。第一个参数指定我们要检查的标记(作用就象掩 码),第二个参数指定“在第一个列表中出现过的且必须被设为1(即状态是打开的)的”标记(第一个列 表中其他的标记必须置0)。也就是说,第一个参数提供检查范围,第二个参数提供被设置的条件(就是哪 些位置1)。这个匹配操作可以识别以下标记:SYN,&ACK,FIN,RST,URG,PSH。另外还有两个词
也可使用,就是ALL和NONE。顾名思义,ALL是指选定所有的标记,NONE是指未选定任何标记。这个匹配也可 在参数前加英文的感叹号表示取反。例如:
1、iptables -p tcp --tcp-flags SYN,FIN,ACK SYN表示匹配那些SYN标记被设 置而FIN和ACK标记没有设置的包,注意各标记之间只有一个逗号而没有空格。
2、--tcp-flags ALL NONE匹配所有标记都未置1的包。
3、iptables -p tcp --tcp-flags ! SYN,FIN,ACK SYN表示匹配那些FIN和ACK标 记被设置而SYN标记没有设置的包,注意和例1比较一下。
iptables -p tcp --syn
Explanation
这个匹配或多或少算是ipchains时代的遗留物,之所以还保 留它,是为了向后兼容,也是为了方便规则在iptables和ipchains间的转换。它匹配那些SYN标记被设置而 ACK和RST标记没有设置的包,这和iptables -p tcp --tcp-flags SYN,RST,ACK SYN&的作用毫无二样。这样的包主要用在TCP连接初始化时发出请求。如果你阻止了这样的包,也就阻止了所有
由外向内的连接企图,这在一定程度上防止了一些攻击。但外出的连接不受影响,恰恰现在有很多攻击就利 用这一点。比如有些攻击黑掉服务器之后安装会一些软件,它们能够利用已存的连接到达你的机子,而不要 再新开一个端口。这个匹配也可用英文感叹号取反,如:! --syn用来匹配那些&RST或ACK被置位的包,换句话说,就是 状态为已建立的连接的包。
--tcp-option
iptables -p tcp --tcp-option 16
Explanation
根据匹配包。TCP选项是TCP头中的特殊部分,有三个不同的 部分。第一个8位组表示选项的类型,第二个8位组表示选项的长度(这个长度是整个选项的长度,但不包含 填充部分所占的字节,而且要注意不是每个TCP选项都有这一部分的),第三部分当然就是选项的内容了。 为了适应标准,我们不必执行所有的选项,但我们可以查看选项的类型,如果不是我们所支持的,那就只是 看看长度然后跳过数据部分。这个操作是根据选项的十进制值来匹配的,它也可以用英文感叹号取反。所有
的选项都可在里找到。
UDP matches是在指定--protocol UDP时自动装入的。UDP是一种无连接协议,所 以在它打开、关闭连接以及在发送数据时没有多少标记要设置,它也不需要任何类型的确认。数据丢失了, 就丢失了(不会发送ICMP错误信息的)。这就说明UDP matches要比TCP matches少多了。即使UDP和ICMP是 无连接协议,状态机制也可以很好的工作,就象在TCP上一样,这在前面讨论过。
Table 6-6. UDP matches
--sport,&--source-port
iptables -A INPUT -p udp --sport 53
Explanation
基于UDP包的源端口来匹配包,端口的指定形式和TCP matches中的--sport完全一样。
--dport,&--destination-port
iptables -A INPUT -p udp --dport 53
Explanation
基于UDP包的目的端口来匹配包,端口的指定形式和TCP matches中的--sport完全一样。
ICMP协议也是无连接协议,ICMP包更是短命鬼,比UDP的还短。ICMP协议不是IP协议的下属协议,而是它 的辅助者,其主要作用是报告错误和连接控制。ICMP包的头和IP的很相似,但又有很多不同。这个协议最主 要的特点是它有很多类型,以应对不同的情况。比如,我们想访问一个无法访问的地址,就会收到一个ICMP host unreachable信息,它的意思是主机无法到达。在附录里有完整的ICMP类型列表。虽然有这么多类型,但只有一个
ICMP matche,这就足够对付它们了。这个matche是在指定--protocol ICMP时自动 装入的。注意所有的通用匹配都可以使用,这样我们就可以匹配ICMP包的源、目地址。
Table 6-7. ICMP matches
--icmp-type
iptables -A INPUT -p icmp --icmp-type 8
Explanation
根据ICMP类型匹配包,类型的指定可以使用十进制数值或相 应的名字,数值在RFC792中有定义,名字可以用iptables --protocol icmp --help&查看,或者在附录中查找。这个匹配也可用英文感叹号取
反,如:--icmp-type ! 8就表示匹配除类型8之外的所有ICMP包。要注意有些ICMP 类型已经废弃不用了,还有一些可能会对无防护的主机带来“危险”,因为它们可能把包重定向到错误的地 方。
显式匹配必须用-m或--match装载,比如要使用状态匹配 就必须使用-m state。有些匹配还需要指定协议,有些就不需要,比如连接状态就 不要。这些状态是NEW(还未建立好的连接的第一个包),&ESTABLISHED(已建立的连接,也就是已经在内核里注册过的),RELATED(由
已经存在的、处于已建立状态的连接生成的新连接),等等。有些匹配还处在开发阶段,或者还只是为了说 明iptables的强大能力。这说明不是所有的匹配一开始就是实用的,但以后你可能会用到它。随着iptables 新版本的发布,会有一些新的匹配可用。隐含匹配和显式匹配最大的区别就是一个是跟随协议匹配自动装载 的,一个是显式装载的。
这个匹配操作必须由-m limit明确指定才能使用。有了它的帮助,就可以对指定 的规则的日志数量加以限制,以免你被信息的洪流淹没哦。比如,你可以事先设定一个限定值,当符合条件 的包的数量不超过它时,就记录;超过了,就不记录了。我们可以控制某条规则在一段时间内的匹配次数 (也就是可以匹配的包的数量),这样就能够减少DoS&syn
flood攻击的影响。这 是它的主要作用,当然,还有很多其他作用(译者注:比如,对于某些不常用的服务可以限制连接数量,以 免影响其他服务)。limit&match也可以用英文感叹号取反,如:-m limit ! --limit 5/s表示在数量超过限定值后,所有的包都会被匹配。
(译者注:为了更好地理解这个匹配操作,我们通过一个比喻来解释一下。原文也做了类似地比喻,但 我觉得对于初学者不易理解,故未采用。)limit match的工作方式就像一个单位大门口的保安,当有人要 进入时,需要找他办理通行证。早上上班时,保安手里有一定数量的通行证,来一个人,就签发一个,当通 行证用完后,再来人就进不去了,但他们不会等,而是到别的地方去(在iptables里,这相当于一个包不符 合某条规则,就会由后面的规则来处理,如果都不符合,就由缺省的策略处理)。但有个规定,每隔一段时 间保安就要签发一个新的通行证。这样,后面来的人如果恰巧赶上,也就可以进去了。如果没有人来,那通
行证就保留下来,以备来的人用。如果一直没人来,可用的通行证的数量就增加了,但不是无限增大的,最 多也就是刚开始时保安手里有的那个数量。也就是说,刚开始时,通行证的数量是有限的,但每隔一段时间 就有新的通行证可用。limit match有两个参数就对应这种情况,--limit-burst指 定刚开始时有多少通行证可用,--limit指定要隔多长时间才能签发一个新的通行
证。要注意的是,我这里强调的是“签发一个新的通行证”,这是以iptables的角度考虑的。在你自己写规 则时,就要从这个角度考虑。比如,你指定了--limit 3/minute --limit-burst 5&,意思是开始时有5个通行证,用完之后每20秒增加一个(这就是从iptables的角度看的,要是以用户 的角度看,说法就是每一分钟增加三个或者每分钟只能过三个)。你要是想每20分钟过一个,只能写成--limit
3/hour --limit-burst 5,也就是说你要把时间单位凑成整的。
Table 6-8. Limit match options
iptables -A INPUT -m limit --limit 3/hour
Explanation
为limit match设置最大平均匹配速 率,也就是单位时间内limit&match可以匹配几个包。它的形式是一个数值加一个时 间单位,可以是/second/minute&/hour&/day&。默认值是每小时3次(用户角度),即3/hour&,也就是每20分钟一次(iptables角度)。
--limit-burst
iptables -A INPUT -m limit --limit-burst 5
Explanation
这里定义的是limit match的峰值, 就是在单位时间(这个时间由上面的--limit指定)内最多可匹配几个包(由此可 见,--limit-burst的值要比--limit的大)。默认值是5。
为了观察它是如何工作的,你可以启动“只有一条规则的脚本”,然后用不同的时间间隔、发送不同数量的ping数据包。这样,通过返回的&echo replies就可以看出其工作方式了。
基于包的MAC源地址匹配包。到写这篇文章时,这个match还有一点限制(就是只能匹配MAC源地址匹), 但今后定会有所发展,会更有用的。
注意,这个match是由-m mac装入的,而不是一些人想当然的-m mac-source,后者只是前者的选项而已。
Table 6-9. MAC match options
--mac-source
iptables -A INPUT -m mac --mac-source 00:00:00:00:00:01
Explanation
基于包的MAC源地址匹配包,地址格式只能是XX:XX:XX:XX:XX:XX,当然它也可以用英文感叹号取反,如--mac- source ! 00:00:00:00:00:01,意思很简单了,就是除此之外的地址都可接受嘛。注意,因为&MAC
addresses只用于Ethernet类型的网络,所以这个match只能用于Ethernet接 口。而且,它还只能在PREROUTING,FORWARD&和INPUT链里使用。
以包被设置的mark来匹配包,这个值只能由内核更改。前面曾经提到过,mark比较特殊,它不是包本身 的一部分,而是在包穿越计算机的过程中由内核分配的和它相关联的一个字段。它可能被用来改变包的传输 路径或过滤。时至今日,在linux里只有一种方法能设置mark,即iptables的MARK&target,以前在ipchains里是FWMARK&target。这就是为什
么在高级路由里我们仍要参照FWMARK的原因。mark字段的值是一个无符号的整数, 在32位系统上最大可以是(就是2的32次方),这足够用的了:)
Table 6-10. Mark match options
iptables -t mangle -A INPUT -m mark --mark 1
Explanation
以包被设置的mark值来匹配包,这个值是是由下面将要介绍 的&MARK&target来设置的,它是一个无符号的整数。所有通过&Netfilter的包都会被分配一个相关联的mark field&。但要注意mark值可不是在任何情况下都能使用的,它只能在分配给它值的那台机子里使用,因为 它只是由内核在内存里分配的和包相关的几个字节,并不属于包本身,所以我们不能在本机之外的路由器上
使用。mark的格式是--mark value[/mask],如上面的例子是没有掩码的,带掩码的 例子如--mark 1/1。如果指定了掩码,就先把mark值和掩码取逻辑与,然后再和包 的mark值比较。
多端口匹配扩展使我们能够在一条规则里指定不连续的多个端口,如果没有这个扩展,我们只能按端口 来写规则了。其实这只是标准端口匹配的增强版罢了,使我们书写规则更方便而已。
注意:不能在一条规则里同时使用标准端口匹配和多端口匹配,如--sport
-m multiport --dport 21,23,80。这条规则并不能想你想象的那样工作,但也不是 不能工作,iptables会使用第一个合法的条件,那么这里多端口匹配就白写了:)
Table 6-11. Multiport match options
--source-port
iptables -A INPUT -p tcp -m multiport --source-port 22,53,80,110
Explanation
源端口多端口匹配,最多可以指定15个端口,以英文逗号分 隔,注意没有空格。使用时必须有-p tcp或-p udp为前提条 件。
--destination-port
iptables -A INPUT -p tcp -m multiport --destination-port 22,53,80,110
Explanation
目的端口多端口匹配,使用方法和源端口多端口匹配一样, 唯一的区别是它匹配的是目的端口。
iptables -A INPUT -p tcp -m multiport --port 22,53,80,110
Explanation
同端口多端口匹配,意思就是它匹配的是那种源端口和目的 端口是同一个端口的包,比如:端口80到端口80的包,110到110的包等。使用方法和源端口多端口匹配一 样。
基于包的生成者(也就是所有者,或称作拥有者,owner)的ID来匹配包,owner可以是启动进程的用户 的ID,或用户所在的组的ID,或进程的ID,或会话的ID。这个扩展原本只是为了说明iptables可以做什么, 现在发展到实用阶段了。但要注意,此扩展只能用在OUTPUT中,原因显而 易见:我们几乎不可能得到发送端例程的ID的任何信息,或者在去往真正目的地的路上哪儿有路由。甚至在&OUTPUT链里,这也不是十分可靠,因为有些包根本没有owner,比如&ICMP
responses,所以它们从不会被这个match抓到:)
Table 6-12. Owner match options
--uid-owner
iptables -A OUTPUT -m owner --uid-owner 500
Explanation
按生成包的用户的ID(UID)来匹配外出的包。使用这个匹 配可以做这样一些事,比如,阻止除root外的用户向防火墙外建立新连接,或阻止除用户http外的任何人使 用HTTP端口发送数据。
--gid-owner
iptables -A OUTPUT -m owner --gid-owner 0
Explanation
按生成包的用户所在组的ID(GID)来匹配外出的包。比 如,我们可以只让属于network组的用户上Internet,而其他用户都不 行;或者只允许http组的成员能从HTTP端口发送数据。
--pid-owner
iptables -A OUTPUT -m owner --pid-owner 78
Explanation
按生成包的进程的ID(GID)来匹配外出的包。比如,我们 可以只允许PID为94的进程(http进}

我要回帖

更多关于 gta5有趣的玩法 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信