外扩adc和f2812 adc的连接方式有哪些

温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!&&|&&
LOFTER精选
网易考拉推荐
用微信&&“扫一扫”
将文章分享到朋友圈。
用易信&&“扫一扫”
将文章分享到朋友圈。
阅读(2161)|
用微信&&“扫一扫”
将文章分享到朋友圈。
用易信&&“扫一扫”
将文章分享到朋友圈。
历史上的今天
loftPermalink:'',
id:'fks_094065',
blogTitle:'TSM320F2812 烧写到Flash中的configuration(原创)',
blogAbstract:'&&&&&&&&& 首先从网上查阅的资料,都说比较困难。实着对我这样的业余2812人员一个大大的下马威啊。没有办法,饭只有一口一口的吃。摸索下来,发现也不是很困难的事情啊(也许在下是夜郎自大,没有遇到稀奇古怪的case)。&&&&&&&&& place-lower device只是实现了很简单的功能,&&&&&&&&&& 1,eCan, 采用了poll transmit AND interrupt receipt,&&&&&&&&&& 2,SCI -b,同样采用轮训发送,中断的接收;&&&&&&&&&& 3,ADC ,只采样了三路,做了很基本的Float到Hexadecimal 的转换&&&&&',
blogTag:'',
blogUrl:'blog/static/',
isPublished:1,
istop:false,
modifyTime:0,
publishTime:1,
permalink:'blog/static/',
commentCount:1,
mainCommentCount:1,
recommendCount:0,
bsrk:-100,
publisherId:0,
recomBlogHome:false,
currentRecomBlog:false,
attachmentsFileIds:[],
groupInfo:{},
friendstatus:'none',
followstatus:'unFollow',
pubSucc:'',
visitorProvince:'',
visitorCity:'',
visitorNewUser:false,
postAddInfo:{},
mset:'000',
remindgoodnightblog:false,
isBlackVisitor:false,
isShowYodaoAd:false,
hostIntro:'',
hmcon:'1',
selfRecomBlogCount:'0',
lofter_single:''
{list a as x}
{if x.moveFrom=='wap'}
{elseif x.moveFrom=='iphone'}
{elseif x.moveFrom=='android'}
{elseif x.moveFrom=='mobile'}
${a.selfIntro|escape}{if great260}${suplement}{/if}
{list a as x}
推荐过这篇日志的人:
{list a as x}
{if !!b&&b.length>0}
他们还推荐了:
{list b as y}
转载记录:
{list d as x}
{list a as x}
{list a as x}
{list a as x}
{list a as x}
{if x_index>4}{break}{/if}
${fn2(x.publishTime,'yyyy-MM-dd HH:mm:ss')}
{list a as x}
{if !!(blogDetail.preBlogPermalink)}
{if !!(blogDetail.nextBlogPermalink)}
{list a as x}
{if defined('newslist')&&newslist.length>0}
{list newslist as x}
{if x_index>7}{break}{/if}
{list a as x}
{var first_option =}
{list x.voteDetailList as voteToOption}
{if voteToOption==1}
{if first_option==false},{/if}&&“${b[voteToOption_index]}”&&
{if (x.role!="-1") },“我是${c[x.role]}”&&{/if}
&&&&&&&&${fn1(x.voteTime)}
{if x.userName==''}{/if}
网易公司版权所有&&
{list x.l as y}
{if defined('wl')}
{list wl as x}{/list}早在2016年11月,经过3GPP RAN1 87次会议讨论,华为主推……
各行业芯片自主问题备受关注。然而,谁知被冠以“中国特……
日的谷歌I/O大会已经召开完毕,颇具戏剧性的是……
多年前,日本电产新建总公司大楼,日本电产的永守重信董……
物联网、智能硬件、汽车电子、工业4.0等的发展,给传感器……
演讲人:卢柱强时间: 10:00:00
演讲人:曾伟权时间: 10:00:00
演讲人:黄科涛时间: 10:00:00
预算:¥10000预算:¥10000
广东省广东省
一种提高DSP的ADC精度的方法
[导读]数字信号处理器TMS320F2812的片上ADC模块的转化结果往往存在较大误差,最大误差甚至会高达9%,如果这样直接在实际工程中应用ADC,必然造成控制精度降低。对此提出了一种改进的校正方法,即用最小二乘和一元线性回归的思想,精确拟合出ADC的输入/输出特性曲线,并以此作为校正的基准在DSP上进行了验证,实验表明,此方法可以将误差提高到1%以内,适合于对控制要求较高的场合。
&&& TI公司的C2000系列DSP以其出色的性能、丰富的片上外设在工业自动化、电机控制、工业生产领域得到广泛应用。TMS320F2812是C2000系列中性能出色的一个,F2812片上集成了12位16通道的数/模转化器,理论上精度可以达到0.1%以上。但实际上由于增益误差(&5%)和偏移误差(&2%)的存在,使得精度只能在5%左右,所以必须对ADC进行校正。
&&& 传统的对于ADC的校正方法是在两路通道输入已知标准电压,根据两点确定一条直线的原理,确定出AD转换的曲线,并以此校正转化值。但由于在校正过程中存在偶然因素的影响,使得这种校正方法精度只能达到3%左右。对此,提出了利用最小二乘法和线性回归的思想进行校正的方法,通过对多个测量点的分析计算,找出最佳的拟合曲线,使得总体的均方误差最小。
&&& 最小二乘法是高斯于1809年提出的,在多学科领域中获得广泛应用的数据处理方法。用最小二乘法估测未知参数,可以有效消除测量中粗大误差和系统误差的影响。回归分析是英国统计学家高尔顿在1889年首先提出的。一元线性回归是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一,运用十分广泛。一般来说,线性回归都可以通过最小二乘法求出其方程,可以计算出对于y=bx+a的直线。
1 校正原理与实现方案
&&& DSP的ADC模块的输入、输出是线性关系,理想情况下,输入输出方程应该是y=x。但实际上,ADC模块是存在增益误差和偏移误差的,其中增益误差是实际曲线斜率和理想曲线斜率之间的偏差,偏移误差是0 V输入时实际输出值与理想输出值(0 V)之间的偏差。F2812的ADC模拟输入电压为0~3 V,输出为0~4 095,模拟输入与数字输出之间的对应关系为:数字输出值=4 095&(模拟输入值-参考电压值)/3.OADC模块输入/输出特性曲线如图1所示。本文引用地址:
&&& F2812的ADC共有输入通道16个,由于通道之间的误差会在&0.2%以内,所以可以任选其中的6路通道作为校正输入端,并分别输入6个不相等的标准直流参考电压。通过在程序中定义结构体变量读取转化后的值,得到6组输入/输出平面上的坐标点。然后利用最小二乘和一元线性回归思想处理数据,求出的拟合最佳曲线,使得各个坐标点到该最佳曲线的距离的平方和(残差平方和)最小。
2 最小二乘法和一元线性回归
2.1 最小二乘原理
&&& 对于线性模型,如果有t个不可测量的未知量,理论上,可对与该t个未知量有函数关系的直接测量量进行t次测量,即可得到函数关系。但由于测量数据不可避免地包含着测量误差,所得到的结果也必定含有一定的误差。为了提高所得结果的精度,可以把测量次数增加到n(n&t),以利用抵偿性减小随机误差的影响。
&&& 高斯认为,根据观测数据求取未知参数时,未知参数最合适数值应是这样的数值,即选出使得模型输出与观测数据尽可能接近的参数估计,接近程度用模型输出和数据之差的平方和来度量。这就是最小二乘的基本思想。最小二乘法原理指出,最精确的值应在使残余误差平方和最小的条件下求得。
2.2 一元线性回归原理
&&& 一元线性回归是处理2个变量之间的关系,即两个变量x和y之间若存在线性关系,则通过试验,分析所得数据,找出两者之间函数曲线。也就是工程上常遇到的直线拟合问题。
3 实验方案与结果分析
3.1 实验方案
&&& 实验利用F2812开发板和DSP调试软件CCS2.0完成。用稳定信号源产生6个标准电压,分别为0.2 V,0.5 V,1.0 V,1.5 V,2.0 V,2.5 V,输入通道选为A0,A1,A2,B0,B1,B2。ADCL0引脚接电路板的模拟地,与模拟输入引脚相连的信号线应该避开数字信号线,以减少数字信号对模拟信号的干扰。输入电路如图2所示。
3.2 校正算法
&&& 设ADC模块的输入/输出曲线为y=a+bx,输入电压值为xi,对应的转化输出值为yi。由最小二乘估计算法可得方程:
3.3 实验数据处理
&& 将实验获得的6组数据利用上述最小二乘法和线性回归方法进行处理,得到a,6的最小二乘估计值分别为,于是回归方程为:y=0.003 612+1.039 091x。以回归方程为标准,由x=(y-0.003 612)/1.039 091可以计算出校正后的转化值,并与未转化的值进行比较,结果如表1所示。
&&& 在Excel中,绘制出未校正输入/输出分布点,和回归曲线,如图3所示。
3.4 结果分析
&&& 由表1和图3可以看出,如果不采取校正措施,则F2812的ADC模块会存在5%左右的相对误差;而采用提出的校正方法,可以将误差下降到1%以下。这就大大提高了A/D转化的精度,对于对控制要求精度很高的场合,牺牲ADC模块的6个通道,得到比较高的转化精度,还是非常必要而且值得的。
&&& 在此提出一种采用最小二乘法和线性回归校正DSP的ADC模块的方法,实验证明此方法可以大大提高转化精度,有效弥补了DSP中AD转化精度不高的缺陷。此方法硬件电路简单,成本代价较低,具有很高的推广和利用价值。
导语:为什么你花费更多的时间,却得不到预期的效果?这里有高效职场的7个方法,招招让你事半功倍。
工作中,很多人往往苦于耗时长,成效少。下面的这七条精益法则不仅仅可以用于市场营销活动,也可以用于其他的工作......关键字:
精神胜利法。这是一种有益身心健康的心理防卫机制。在你的事业、爱情、婚姻不尽如人意时,在你因经济上得不到合理对待而伤感时,在你无端遭到人身攻击或不公正的评价而气恼时,在你因生理缺陷遭到嘲笑而郁郁寡欢时,......关键字:
人人都有疲惫的时候,此时要给自己一点时间,给自己的心灵做个按摩,好好爱自己。1.换个新造型。去理发店,烫个卷发,或将长发剪短,看着镜子中陌生又漂亮的自己会心一笑;或去商场,挑选未曾尝试过的眼影或口红,尝......关键字:
碎片化的Android平台让应用开发和管理相当困难,但是最近的云服务为测试提供了快速可见的新方法,让开发者们更方便地管理各个设备上的应用。在最近波特兰的PIE演示日中, AppThwack 的Trent Peterson表示,通过基于云......关键字:
现在一位外科医生已经设计出利用人工虹膜植入改变人眼颜色的永久性方法肯尼思-罗森塔尔博士是这项手术的先驱,人工虹膜植入每只眼睛需要花费大约15分钟,并需要在局部麻醉下进行据国外媒体报道,彩色隐形眼镜非常流行......关键字:
1、工作多年,总结您的经验和工作经历,您最想与想要或已经从事嵌入式电子行业新人说的话是什么?我当初进入DSP领域,是一个师兄的带领下进入的,但是我初学不久,他就离开学校,开始工作,因此我的DSP学习也暂时结束......关键字:
如果你每天都为蓬勃而出的无数创意兴奋不已,同时也在为创意是否靠谱,是否能满足普遍用户的需求而苦恼,这里有两种方法助你渡过创业黑暗期。
全世界的创业者们每天都诞生出无数前所未有的创意,每天都有巨量的、地......关键字:
书上有很多保持积极心理的方法,这里介绍几个本人亲自尝试过的简单方法,只要你去做就会有惊人的效果:1.每天写下好的3件事情。这3件事情不论大小,只要是你觉得好的进展就好,例如可以是看到某人的微笑,又或者是工......关键字:
苹果iPhoneX即将发布,如今土豪遍地走,人手都想要个iPhoneX,但是产能不足、供货量不够、购买需求旺盛的传闻不断。当然,如果你拿个两万预算购买iPhoneX的话......土豪,我们交个朋友吧。......关键字:
系统的精度由温度传感器的精度,以及将传感器数据进行数字化的高性能ADC决定。在工业以及医疗的应用中很多温度测量通常需要±0.1°C或者更好的测量精度,合理的成本以及更低的功耗。......关键字:
9月16日,“全球首颗支持新一代北斗三号信号体制的多系统多频高精度SoC芯片”正式发布。该芯片用于北斗三号卫星系统建设,在无需地基增强的情况下,便可实现亚米级的定位精度,实现芯片级安全加密。......关键字:
我 要 评 论
热门关键词德州仪器 (TI) 是一家跨国性的半导体设计与制造公司。因具有100,000+个以上模拟IC和嵌入式处理器而独树一帜、同时兼备软件、工具以及业界最大的销售团队/技术支持团队。
Texas Instruments Incorporated. 版权所有.豆丁微信公众号
君,已阅读到文档的结尾了呢~~
小波阈值去噪算法研究及dsp实现,小波变换自适应阈值,小波算法,mallat小波分解算法,dsp算法,图像去噪算法,小波去噪,matlab小波去噪,小波图像去噪,去噪算法
扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
小波阈值去噪算法研究及dsp实现
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='http://www.docin.com/DocinViewer-4.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口TMS320F281
一种提高TMS320F2812 ADC精度的方法
TMS320F2812是德州仪器公司()推出的主频最高可达150 MHz的32位高性能数字信号处理器(DSP),内部集成了ADC转换模块。ADC模块是一个12位、具有流水线结构的模数转换器,内置双采样保持器(S/H),可多路选择16通道输入,快速转换时间运行在25 MHz、ADC时钟或12.5 Msps,16个转换结果寄存器可工作于连续自动排序模式或启动/停止模式。 在现代电子系统中,作为模拟系统与数字系统接口的关键部件,模数转换器(ADC)已经成为一个相当重要的电路单元,用于控制回路中的数据采集。在实际使用中,发现该ADC的转换结果误差较大,如果直接将此转换结果用于控制回路,必然会降低控制精度。为了克服这个缺点,提高其转换精度,笔者在进行了大量实验后,提出一种用于提高TMS320F2812ADC精度的方法,使得ADC精度得到有效提高。 1 ADC模块误差的定义及影响分析 1.1 误差定义 常用的A/D转换器主要存在:失调误差、增益误差和线性误差。这里主要讨论失调误差和增益误差。理想情况下,ADC模块转换方程为y=x×mi,式中x=输入计数值 =输入电压×4095/3;y=输出计数值。在实际中,A/D转换模块的各种误差是不可避免的,这里定义具有增益误差和失调误差的ADC模块的转换方程为y=x×ma±b,式中ma为实际增益,b为失调误差。通过对F2812的ADC信号采集进行多次测量后,发现ADC增益误差一般在5%以内,即0.95 图1理想ADC转换与实际ADC转换 1.2 影响分析 在计算机测控系统中,对象数据的采集一般包含两种基本物理量:模拟量和数字量。对于数字量计算机可以直接读取,而对于模拟量只有通过转换成数字量才能被计算机所接受,因此要实现对模拟量准确的采集及处理,模数转换的精度和准确率必须满足一定的要求。由于F2812的ADC具有一定增益误差的偏移误差,所以很容易造成系统的误操作。下面分析两种误差对线性电压输入及A/D转换结果的影响。 F2812用户手册提供的ADC模块输入模拟电压为0~3 V,而实际使用中由于存在增益误差和偏移误差,其线性输入被减小,分析如表1所列。 下面以y=x×1.05+80为例介绍各项值的计算。当输入为0时,输出为80,由于ADC的最大输出值为4095,则由式y=x×1.05+80求得输入最大电压值为2.8013。 因此,交流输入电压范围为1.7,此时有效位数N=ln4015/ln2=11.971,mV/计数位=2.?6977,其余项计算同上。表1中的最后一行显示了ADC操作的安全参数,其有效位数减少为11.865位,mV/计数位从0.7326增加为0.7345,这将会使转换结果减少0.2%。 在实际应用中,所采集的信号经常为双极型信号,因此信号在送至ADC之前需要添加转换电路,将双极型信号转化为单极型信号。典型的转换电路如图2所示。对于ADC模块,考虑到增益误差和失调误差对输入范围的影响,转换电路需要调整为如图3所示的电路。在图3中,输入增益误差的参考范围已经改变。 对于双极性输入,其0 V输入的增益误差对应单极性输入的1.4315V的增益误差,因此,原有ADC的增益误差和失调误差被增大了。例如,如果ADC的增益误差为5%,失调误差为2%,则其双极性的增益误差计算如下:双极性输入x′= 0.0000 V,单极性的ADC输入电压x = 1.4315 V,其理想的转换值为ye=1./3=1954,而由ya=+80计算得实际转换值,则双极性增益误差为ya-ye=8(9.1%误差)。通过计算可以看出,ADC的误差大大增加,因此要使用ADC进行数据采集,就必须对ADC进行校正,提高其转换精度。 图2理想情况下的电压转换电路 图3校正后的电压转换电路 2 ADC校正 2.1校正方法 通过以上分析可以看出,F2812的ADC转换精度较差的主要原因是存在增益误差和失调误差,因此要提高转换精度就必须对两种误差进行补偿。对于ADC模块采取了如下方法对其进行校正。 选用ADC的任意两个通道作为参考输入通道,并分别提供给它们已知的直流参考电压作为输入(两个电压不能相同),通过读取相应的结果寄存器获取转换值,利用两组输入输出值求得ADC模块的校正增益和校正失调,然后利用这两个值对其他通道的转换数据进行补偿,从而提高了ADC模块转换的准确度。图1示出了如何利用方程获取ADC的校正增益和校正失调。具体计算过程如下: ① 获取已知输入参考电压信号的转换值yL和yh。 ② 利用方程y=x×ma+b及已知的参考值(xL,yL)和(xH,yH)计算实际增益及失调误差: 实际增益ma=(yH-yL)/(xH-xL); 失调误差 b="yL" -xL×ma。 ③ 定义输入x=y×CalGain-CalOffset,则由方程y=x×ma+b得校正增益CalGain=1/ma=(xH-xL)/(yH -yL),校正失调CalOffset=b/ma=yL/ma-xL。 ④ 将所求的校正增益及校正失调应用于其他测量通道,对ADC转换结果进行校正。 上述即为实现ADC校正的全过程,通过使用这种方法,ADC的转换精度有很大提高。由于这种方法是通过某个通道的误差去修正其他通道的误差,因此要采用这种方法,必须保证通道间具有较小的通道误差。对F2812ADC转换模块,由于其通道间的增益及失调误差均在0.2%以内,所以可以采用这种方法对其进行校正。 2.2 软件实现 与一般的ADC转换程序相比,带校正的ADC转换程序需要另外增加两个程序段:校正值的计算以及利用校正值对ADC进行处理。为了方便操作及转换结果获取,实现中定义了结构体变量ADC?CALIBRAON?VARS,用来保存ADC转换后的各种数据。另外,提高程序的通用性,采样的方式、参考电压值及高低电压理想的转换值均在ADC转换头文件ADCCalibraon.h中定义。ADC?CALIBRAON?VARS定义如下: typedefstruct{ Uint*RefHighChA//参考高电压所连通道地址 Uint*RefHighChA//参考低电压所连通道地址 Uint*ChoA//0通道地址 UintAvg_RefHighActualC//参考高电压实际转换值 UintAvg_RefHighActualC//参考低电压实际转换值 UintRefHighIdealC//参考高电压理想转换值 UintRefLowC//参考低电压实际转换值 UintCalG//校正增益 UintCalO//校正失调 //校正通道的转换值 UintCh0; UintCh16; }ADC CALIBRATION VARS; 整个A/D转换任务由中断函数intADC()和主函数ADCCalibration()构成。中断函数主要用于转换数据的读取,而校正参数计算及各通道转换结果的修正在主函数完成。校正完后,将结果保存到所定义的结构体变量中。此处,对ADC的校正采用单采样单校正的处理方法,当然也可以采用多采样单校正的处理方法,但是为了提高精度,如果设计系统开支允许,建议最好使用单采样单校正的方法,以提高ADC精度。 2.3实验结果 笔者在自己所使用的F2812系统上进行了实验,选用1 V和2 V作为参考电压,选用通道A6和A7作为参考通道,通过对0 V、0.5 V、1.5 V、2.5 V校正前后的数据进行比较,发现采用上述校正方法后,ADC的转换准确度明显得到改善,比较结果如表2所列。 注:由参考电压计算得:CalGain=0.965;CalOffset=6.757。 表2中所给出的数据只是笔者进行大量实验后所得数据的一组,实验证明通过校正后ADC的误差能被控制在0.5%以内,这对大多数测控系统来说已满足要求,对于转换精度要求更高的系统,可以采用外扩A/D转换器。 结语 A/D转换器是数据采集电路的核心部件,其良好的精度与准确性是提高数据采集电路性能的关键。TMS320F2812作为TI公司推出的一款集微控制器及数字信号处理器于一身的32位处理器,以其运行速度高和强大的处理功能得到广泛应用,而对其ADC模块精度的提高,将进一步提高其在控制领域中的应用。本文提出的用于提高ADC模块精度的校正算法,经实际应用证明实用可行。
关注电子发烧友微信
有趣有料的资讯及技术干货
下载发烧友APP
打造属于您的人脉电子圈
关注发烧友课堂
锁定最新课程活动及技术直播
  随着激光打标机应用范围的不断扩大,对激光打标的速度和精度要求也越来越高。TI(德州仪器)公司的T...
  TMS320F2812是目前性能非常优秀的32位定点DSP,集成了多种外设。对TMS320F28...
在工业应用中常使用传感器测量参数,但传感器信号一般较弱,并不适合远距离传输,而且非线性效果不理想,达...
  制造业中需要的线形驱动力,传统的方法是用旋转电机加滚珠丝杠的方式提供。实践证明,在许多高精密、高...
本文给出一种基于TMS320F2812(简称F2812)DSP的一种简易测频方法。该方法有效利用F2...
TMS320F2812是TI公司推出的一款用于控制系统的高性能、多功能、高性价比的32位定点DSP芯...
TMS320F2812的三相整流器设计研究摘要:详细论述了SVPWM(空间矢量调制)的基本原理,给出...
基于TMS320F2812的高压电机保护装置
  高压电机一般都是用于工业生产中的重...
&&& 数字信号处理器(Digital Sig...
供应链服务
版权所有 (C) 深圳华强聚丰电子科技有限公司
电信与信息服务业务经营许可证:粤B2-}

我要回帖

更多关于 2812 adc参考 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信