地震对在建楼房的影响会对房屋造成哪些破坏?

地震会引起各类建筑物倒塌和损坏,设备和设施损坏,地震对建筑物的破坏机理是什么呢?下面带您了解一下。

地震对建筑物的破坏作用主要有三种因素:振动破坏、地基失效破坏、次生效应破坏。

1.振动破坏:地震发生时,先产生纵波,使我们感觉到房屋的上下震动,这对建筑物的破坏性不大,因为建筑物建造时为了抵抗地球吸引力,在纵向上的建筑强度是很高的。纵波来得快,去的也快。纵波过去后就是横波,是破坏性最大的。横波使建筑物左右摇动,水平方向的剪切力非常巨大,使建筑物结构错位,引起坍塌等灾难。

2.地基失效破坏:房屋建筑物所在的地基土质、下卧岩层的结构与深度、基础的类型和深度以及地表地形特征,都对房屋建筑物的地震破坏有影响。当加速度较小时或地质坚实时,地表层或下垫层可能会先达到屈服点,岩石、土层将产生塑性变形,导致地基承载力下降甚至地基失效造成的破坏和强烈地震引起的振动导致基底土质液化引起房屋建筑物的下沉、倾斜和滑坡造成的破坏。

3.次生效应破坏:地震会引发滑坡、崩塌落石、泥石流、地裂缝、地面塌陷、砂土液化等次生地质灾害和水灾,发生在深海地区的强烈地震还可引起海啸。这些次生灾害也会导致建筑物倒塌、损毁。

今天小编就地震对建筑物的破坏机理进行了简单的介绍,对于以及其他,还请了解更多佰佰安全网上的自然灾害小知识,希望对您有所帮助。

为更好的为公众说明安全知识的重要性,本站引用了部分来源于网络的图片插图,无任何商业性目的。适用于《信息网络传播权保护条例》第六条“为介绍、评论某一作品或者说明某一问题,在向公众提供的作品中适当引用已经发表的作品”之规定。如果权利人认为受到影响,请与我方联系,我方核实后立即删除。

}

我国是世界上地震灾害最为严重的国家之一,唐山大地震、汶川地震、青海玉树地震、云南鲁甸地震,每一次强震都给我们留下了惨痛的记忆与深刻的教训。

随着社会发展及科学技术的进步,人类对地震灾害的预见和预防工作更加重视,如何从注重灾后救助向灾前预防转变从减小灾害损失到减轻灾害风险转变也更加迫切。我国是世界上每年新建建筑数量最大的国家,同时也是遭受地震灾害影响最大的国家之一。如何提升建筑工程结构抗震能力,已成为摆在我国工程技术人员面前的迫在眉睫的重要任务。

现阶段,我国建筑工程主要采用了三种抗震方法,通俗来讲,一种是通过加粗柱子、多加钢筋的传统方法,提高建筑结构的强度来抗震;另一种是将建筑物某些非承重部分设计成效能杆件或通过装设效能装置来进行减震;第三种是通过在地基与柱子之间加钢板橡胶垫的方法来进行隔震

第一种方法,也就是传统的、依靠增加结构的强度和延性变形能力来抵抗地震的结构抗震设计方法,增加了建造费用和施工难度,并且在高烈度的地震实例中,抗震设计的概念难以满足结构的抗震需求。

20 世纪70 年代以来, 减隔震技术在世界范围内引起了广泛关注。从汶川地震以来,我国采用减隔震技术的建筑也在不断增多。2014年,住建部印发了《关于房屋建筑工程推广应用减隔震技术的若干意见( 暂行) 的文件后,减隔震技术得到越来越广泛的关注与应用,建筑结构设计也逐渐从传统的抗震设计向减震”“隔震设计方向发展。

减隔震技术及相关产品可有效提升建筑抗震性能,让房屋建筑水平在灾难发生之前,从而让减轻地震灾害的破坏性成为可能。

减隔震技术所持有的核心思想就是,想尽办法让建筑物主体结构在发生地震时,能与可能造成结构破坏的地面震动隔离开来。为实现这一目标,采取的方法为延长结构周期,在一定范围内,规避开地震卓越周期,使地震能量尽可能少地传输到建筑主体结构中,以此减少地震造成的损失。

减震是利用结构耗能减震技术,通过在结构物中设置耗能装置,在主体结构进入非弹性状态前进入耗能状态,通过一系列的变形摩擦使得输入结构体系的总能量得以耗散减少,主体结构承受地震能量越小,其因地震导致的破坏就越小,从而有效地保护了主体结构的完整性,达到抗震的目的。主要措施包括采用高延性构件、提高结构阻尼、设置节点耗能装置等。

隔震是在建筑物上部结构与基础之间加一层橡胶和钢板隔层叠加的隔震支座柔软层,通过延长结构自振周期,避开地面振动共振区,从而隔离地震,阻止地震能量向上传递。工程中常用的隔震方式有两种,一是积极隔震,用隔震器将震源与基础隔离开来,减小传递给基础的力;二是消极隔震,即阻止震动的输入,常用的方式是设置隔震层。

中国工程院院士周福霖曾将隔震生动的比作水托着海上行驶的船。地震时船体与震动的海面之间隔着柔软的水层,船体只会慢慢摇摆,加在船体的地震冲击力被卸去。

建筑结构减隔震技术的应用意义

建筑物容易遭受地震损害的原因,是因为地震能量来自于地面,地面剧烈振动的时候,会同时引发建筑物的剧烈抖动,破坏也随之出现。应用减隔震技术,能将地震速度反应降低,在极大程度上减少地震对建筑物、对室内设施、对人员的损害与威胁,保障人们的生命财产安全。

非隔震结构与隔震结构的变形对比图

从非隔震结构与隔震结构的变形对比图,我们可以看出,左边没有应用减隔震技术的建筑结构,在发生地震后,地震作用力被直接传送到了建筑本体结构上,建筑发生严重变形。而应用了减隔震技术的建筑结构,在遇到地震的时候,其结构变形程度十分小,地震的作用力大部分被隔震装置消耗了。

从统计数据来看,应用了减隔震技术的建筑与未应用减隔震技术的建筑在抗震能力方面具有明显差异。应用了减隔震技术的建筑在遇到地震时,只会发生轻微的倾斜,建筑物内部的设施、器具等物品都不会遭受太大损伤,而未应用减隔震技术的建筑在遇到地震时,会造成严重的破坏,建筑物内部也不能幸免。

芦山县人民医院采用隔震措施的楼体在芦山地震中几乎没有破坏

芦山县人民医院未采用隔震措施的楼体在芦山地震中破坏严重

芦山县人民医院门诊楼采用了橡胶隔震垫、阻尼器等先进的减隔震技术,经历芦山地震后,大楼的窗户玻璃和楼顶招牌仍完好无损。

金属阻尼器由金属阻尼元件、连接板等组成,利用摩擦及金属的塑性变形吸收、消耗地震能量。国内外已研发了多种形式的金属阻尼器,比如锥形板钢阻尼器、X 型加劲钢板阻尼器、蜂窝型钢板阻尼器、E 型钢阻尼器、单圆锥形阻尼器、减震榫-活动支座等。

液体粘滞阻尼器由活塞、粘滞阻尼材料、活塞杆等部分组成, 通过活塞的往复运动耗散能量。液体粘滞阻尼器被广泛应用于桥梁的维修加固及新建工程中。

隔震装置:常用的隔震装置主要有天然橡胶隔震支座、铅芯橡胶隔震支座、高阻尼橡胶隔震支座、摩擦摆隔震支座等。

1.天然橡胶支座及铅芯橡胶隔震支座

天然橡胶隔震支座由天然橡胶与钢板镶嵌、粘合、硫化而成的一种隔震支座产品,主要由两部分构成,一部分是钢板,另一部分是橡胶,钢板通过对橡胶层的约束作用,使橡胶层和钢板共同承担竖向荷载,给上部结构提供较大承载力。橡胶层具有良好的弹性,在地震中能够产生较大的剪切变形,以满足上部结构的水平位移,此外,在桥梁中还能应对梁端的扭转变形。

铅芯橡胶隔震支座由橡胶支座在其中间竖直地放入适当直径的铅芯构成, 用以增强叠层橡胶支座的刚度及能量耗散能力。铅芯橡胶支座性能好、价格低廉、加工方便。目前, 铅芯橡胶支座已被多个国家应用于桥梁抗震中, 如日本的宫川大桥, 中国的石津渠中桥、晋江大桥、布谷孜铁路桥等。

2、高阻尼橡胶隔震支座

高阻尼橡胶隔震支座采用粘弹性高阻尼橡胶材料制作而成, 同时具备粘弹性和高阻尼性, 具有更大的初始刚度。目前, 高阻尼橡胶支座已经广泛应用于建筑结构和公路桥梁中。

高阻尼橡胶隔震支座结构

摩擦摆隔震支座利用摩擦滑移耗能和自身的重力及圆弧滑移面自动复位, 具有较好的综合隔震性能。目前, 摩擦摆支座被广泛应用于新建建筑工程中。

减隔震技术现状及方案的选择

减隔震技术经过几代人的努力已经日趋成熟,能够结合工程的实际情况进行选择。但是,该项技术还存在着许多问题,比如经济投入大,并不能使更多的平民建筑、乡镇建筑采用;技术难度大,在设计方面各种装置性能各异,其之间的组合并不成系统,还要考虑环境因素对装置结构的性能影响;器材的养护费用高等等。因此在进行建筑结构的减隔震设计时,应该从经济、安全、技术实施的可行性等多方面进行综合考量分析,参考抗震设防的类型、所需的设防烈度、建筑的现实场地条件、使用功能进行综合判断,最终确定设计方案。

1、陶锦华,减隔震技术的发展及在学校建筑中的应用,智城建设,2020年第13

2、李金红,建筑结构减隔震技术应用探讨,科技创新导报,建筑科学,2019

3、罗华, 李志华,高速铁路桥梁减隔震装置研究进展,湖南理工学院学报(自然科学版),第33卷 第2期 ,20206

4、马艳、李港辉等,探究我国减隔震技术研究综述,陕西建筑,201812月总第282


}

  1、板缘地震(板块边界地震) 发生在板块边界上的地震,环太平洋地震带上绝大多数地震属于此类。

  2、板内地震 发生在板块内部的地震,如欧亚大陆内部(包括中国)的地震多属此类。板内地震除与板块运动有关,还要受局部地质环境的影响,其发震的原因与规律比板缘地震更复杂。

  3、火山地震 是由火山爆发时所引起的能量冲击,而产生的地壳振动。

  1、天然地震 指自然界发生的地震现象;

  2、人工地震 由爆破、核试验等人为因素引起的地面震动;

  3、脉动 由于大气活动、海浪冲击等原因引起的地球表层的经常性微动。

  1、构造地震 是由于地下岩层的快速破裂和错动所造成的地震,占全球地震总数的90%以上。宁夏所发生的地震,绝大多数属于此种类型。由于构造地震频度高、强度大、破坏重,因此是地震监测预报、防灾减灾的重点对象。

  孤立型地震:有突出的主震,余震次数少、强度低;主震所释放的能量占全序列的99.9%以上;主震震级和最大余震相差2.4级以上。

  主震——余震型地震:主震非常突出,余震十分丰富;最大地震所释放的能量占全序列的90%以上;主震震级和最大余震相差0.7~2.4级。

  双震型地震:一次地震活动序列中,90%以上的能量主要由发生时间接近,地点接近,大小接近的两次地震释放。

  震群型地震:有两个以上大小相近的主震,余震十分丰富;主要能量通过多次震级相近的地震释放,最大地震所释放的能量占全序列的90%以下;主震震级和最大余震相差0.7级以下。

  2、火山地震 是由于火山作用引起的地震,占全球发生地震数的7%左右。火山地震都发生在活火山地区,一般震级不大。

  3、陷落地震 是由于地层陷落(如喀斯特地形、矿坑下塌等)引起的地震,占全球地震总数的3%左右,其破坏范围非常有限。

  4、诱发地震 在特定的地区因某种地壳外界因素诱发(如陨石坠落、水库蓄水、深井注水)而引起的地震。

  1、浅源地震 震源深度小于60公里的地震,也称正常深度地震,占总数的3%。宁夏地震都是浅源地震。

  2、中源地震 震源深度在60公里至300公里之间的地震称为中源地震。

  3、深源地震 震源深度大于300公里的地震称为深源地震。已记录到的最深地震的震源深度约为700公里。

  大地振动是地震最直观、最普遍的表现。在海底或滨海地区发生的强烈地震,能引起巨大的波浪,称为海啸。在大陆地区发生的强烈地震,会引发滑坡、崩塌、地裂缝等次生灾害。

  破坏性地震一般是浅源地震。对于同样大小的地震,由于震源深度不一样,对地面造成的破坏程度也不一样。震源越浅,破坏越大,但波及范围也越小,反之亦然。破坏性地震如1976年的唐山地震的震源深度为12公里。

  地震可由地震仪所测量,地震的震级是用作表示由震源释放出来的能量,以“里氏地震规模”来表示,烈度则透过“修订麦加利地震烈度表”来表示。地震释放的能量决定地震的震级,释放的能量越大震级越大,地震相差一级,能量相差约30倍。震级相差0.1级,释放的能量平均相差1.4倍。1995年日本大阪神户7.2级地震所释放的能量相当于1000颗二战时美国向日本广岛长崎投放的原子弹的能量。

  地震直接灾害是地震的原生现象,如地震断层错动,以及地震波引起地面振动,所造成的灾害。主要有:地面的破坏,建筑物与构筑物的破坏,山体等自然物的破坏(如滑坡、泥石流等),海啸、地光烧伤等。

  地震时,最基本的现象是地面的连续振动,主要特征是明显的晃动。极震区的人在感到大的晃动之前,有时首先感到上下跳动。因为地震波从地内向地面传来,纵波首先到达。横波接着产生大振幅的水平方向的晃动,是造成地震灾害的主要原因。1960年智利大地震时,最大的晃动持续了3分钟。地震造成的灾害首先是破坏房屋和构筑物,造成人畜的伤亡,如1976年中国河北唐山地震中,70%~80%的建筑物倒塌,人员伤亡惨重。

  地震对自然界景观也有很大影响。最主要的后果是地面出现断层和地裂缝。大地震的地表断层常绵延几十至几百千米,往往具有较明显的垂直错距和水平错距,能反映出震源处的构造变动特征(见浓尾大地震,旧金山大地震)。但并不是所有的地表断裂都直接与震源的运动相联系,它们也可能是由于地震波造成的次生影响。特别是地表沉积层较厚的地区,坡地边缘、河岸和道路两旁常出现地裂缝,这往往是由于地形因素,在一侧没有依托的条件下晃动使表土松垮和崩裂。地震的晃动使表土下沉,浅层的地下水受挤压会沿地裂缝上升至地表,形成喷沙冒水现象。大地震能使局部地形改观,或隆起,或沉降。使城乡道路坼裂、铁轨扭曲、桥梁折断。在现代化城市中,由于地下管道破裂和电缆被切断造成停水、停电和通讯受阻。煤气、有毒气体和放射性物质泄漏可导致火灾和毒物、放射性污染等次生灾害。在山区,地震还能引起山崩和滑坡,常造成掩埋村镇的惨剧。崩塌的山石堵塞江河,在上游形成地震湖。1923年日本关东大地震时,神奈川县发生泥石流,顺山谷下滑,远达5千米。

  地震次生灾害是直接灾害发生后,破坏了自然或社会原有的平衡或稳定状态,从而引发出的灾害。主要有:火灾、水灾、毒气泄漏、瘟疫等。其中火灾是次生灾害中最常见、最严重的。

  火灾:地震火灾多是因房屋倒塌后火源失控引起的。由于震后消防系统受损,社会秩序混乱,火势不易得到有效控制,因而往往酿成大灾。

  海啸:地震时海底地层发生断裂,部分地层出现猛烈上升或下沉,造成从海底到海面的整个水层发生剧烈“抖动”,这就是地震海啸。

  瘟疫:强烈地震发生后,灾区水源、供水系统等遭到破坏或受到污染,灾区生活环境严重恶化,故极易造成疫病流行。社会条件的优劣与灾后疫病是否流行,关系极为密切。

  滑坡和崩塌:这类地震的次生灾害主要发生在山区和塬区,由于地震的强烈振动,使得原已处于不稳定状态的山崖或塬坡发生崩塌或滑坡。这类次生灾害虽然是局部的,但往往是毁灭性的,使整村整户人财全被埋没。

  水灾:地震引起水库、江湖决堤,或是由于山体崩塌堵塞河道造成水体溢出等,都可能造成地震水灾。

  此外,社会经济技术的发展还带来新的继发性灾害,如通信事故、计算机事故等。这些灾害是否发生或灾害大小,往往与社会条件有着更为密切的关系。

  地震灾害破坏程度,除了与震级大小有关外,还与震源深度、距震中远近、震中区的地质条件、建筑物的抗震性能、人们的防震搞震意识、应急措施和预报预防程度等有关。

  (1)测震:记录一个区域内大小地震的时空分布和特征,从而预报大地震。人们常说的“小震闹,大震到”,就是以震报震的一种特例。当然,需要注意的是“小震闹”并不一定导致“大震到”。

  (2)地壳形变观测:许多地震在临震前,震区的地壳形变增大,可以是平时的几倍到几十倍。如测量断层两侧的相对垂直升降或水平位移的参数,是地震预报重要的依据。

  (3)地磁测量:地球基本磁场可以直接反映地球各种深度乃至地核的物理过程,地磁场及其变化是地球深部物理过程信息的重要来源之一。震磁效益的研究有其理论依据和实验基础,更有震例的事实。

  (4)地电观测:地震孕育过程中,将伴随有地下介质(主要是岩石)电阻率的变化及大地电流和自然电场的变化,由于这些变化与岩石受力变形及破裂过程有关,因此提取这一信息可以预测地震。

  (5)重力观测:地球重力场是一种比较稳定的地球物理场之一,它与观测点的位置和地球内部介质密度有关。因此,通过重力场变化可以了解到地壳的变形、岩石密度的变化,从而预测地震。

  (6)地应力观测:地震孕育不论机制如何,其实质是一个力学过程,是在一定构造背景条件下,地壳体中应力作用的结果。观测地壳应力的变化,可以捕捉地震前兆的信息。

  (7)地下水物理和化学的动态观测:地下水动态在震前异常现象,宏观现象如水井水位上涨,水中翻花冒泡、井水变色变味等;微观现象如水化学成分改变(如水中溶解氡气量变化等),固体潮(天体引潮力引起的地下水位涨落现象)的改变等。通过地下水动态的观测,可以直接地了解含水层受周围的影响情况和受力的情况,从而进行地震预报。

  类似这样的经常性的监测手段和预报方法还有不少。地震学家们根据多种手段观测的结果,综合考虑环境因素、构造条件和地球动力因素等,提出慎之又慎的分析预测意见。

四、地震时应该如何逃生

  (一)地震发生时室内正确逃生方式

  震时是跑还是躲,我国多数专家认为:震时就近躲避,震后迅速撤离到安全地方,是应急避震较好的办法。避震应选择室内结实、能掩护身体的物体旁、易于形成三角空间的地方,开间小、有支撑的地方,室外开阔、安全的地方。

  身体应采取伏而待定,蹲下或坐下,尽量蜷曲身体,降低身体重心的姿势。同时,抓住桌腿等牢固的物体。

  保护头颈、眼睛、掩住口鼻。

  不要随便点灯火,因为空气中可能有因燃气管线破裂泄漏的易燃易爆气体。

  (二)地震发生在公共场所怎样逃生

  听从现场工作人员的指挥,不要慌乱,不要拥向出口,要避开人流,避免被挤到墙壁或栅栏处。

  就地蹲下或趴在排椅下;注意避开吊灯、电扇等悬挂物;用坚硬物等用品保护头部;等地震过去后,听从工作人员指挥 ,有组织地撤离。在商场、书店、展览馆、地铁等处选择结实的柜台、商品(如低矮家具等)或柱子边,以及内墙角等处就地蹲下,用手或其他东西护头;避开玻璃门窗、玻璃橱窗或柜台;避开高大不稳或摆放重物、易碎品的货架;避开广告牌、吊灯等高耸后悬挂物。在行驶的电(汽)车内抓牢扶手,以免摔倒或碰伤;降低重心,躲在座位附近。地震过去后再下车。

  (三)地震发生在户外怎样逃生

  1.就地选择开阔地逃生 蹲下或趴,以免摔倒;不要乱跑,避开人多的地方;保护头部;不要随便返回室内。

  2.避开高大建筑物或构筑物 楼房,特别是有玻璃幕墙的建筑;过街桥、立交桥上下;高烟囱、水塔下。;

  3.避开危险物、高耸或悬挂物 变压器、电线杆、路灯等;广告牌、吊车等。

  4.避开其他危险场所 狭窄的街道;危旧房屋,危墙;女儿墙、高门脸、雨蓬下;砖瓦、木料等物的堆放处。

  (四)地震发生在学校怎样逃生

  正在上课时,要在教师指挥下迅速抱头、闭眼、躲在各自的课桌下或课桌旁。在操场或室外时,可原地不动蹲下,双手保护头部。注意避开高大建筑物或危险物。震后应当有组织地撤离。必要时应在室外上课,不要回到教室去。

  (五)地震发生在野外怎样逃生

  避开山边的危险环境,避开山脚、陡崖,以防山崩、滚石、泥石流等;避开陡峭的山坡、山崖,以防地裂、滑坡等。躲避山崩、滑坡、泥石流;遇到山崩、滑坡,要向垂直与滚石前进方向跑,切不可顺着滚石方向往山下跑;也可躲在结实的障碍物下,或蹲在地沟、坎下;特别要保护好头部。

}

我要回帖

更多关于 地震对在建楼房的影响 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信