数学逻辑问题?

数学,要说爱你不容易,不管你是天才还是庸人,都是它虐待的对象,差别在于有人在这虐待的过程中得到快乐,但大部分人得到的是痛苦。痛苦的一个根源是其实我们并不认识它,撇开我们在与数学打交道的过程中的不愉快或愉快,让我们从另一个角度、一个轻松的带着喝下午茶的心情,带着一个旁观者的心态,来看一看数学的意义。
(中国科学院院士、中国科学院数学与系统科学研究院研究员)

很多人都感到数学有一种特殊的美感,他们也曾经做过生理上的分析,发现这个美感和看到漂亮风景、帅哥靓女之类,神经反应好像差不多的。事实上还有一些物理学家,对数学之美的感受是很强烈的,对数学的美的追求也是无尽的。外尔对数学美的态度就是这样,“我的工作总是设法把真与美统一起来,但如果只能选择这个或另一个时,我常常选择美。”一般我们追求真善美,但好像从道德上来讲,这样做是不对的,但数学里面的美很可能是更高层次的真实。就像在我们所认识的世界里面,你的认识是有一定局限的,但美是一个原则,让你发现更高层次的真实。外尔写的《群论与量子力学》1928年首次出版,非常的有名,据说当时的理论物理学家都会把这本书放在书架上,但都不看,因为里面的数学太难了。物理学家对数学家写的书好像好感并不多,他们的评价大概是这样的,认为数学家写的书有两种:第一种是看了一页就看不下去了,第二种是看了一行就看不下去了。

哈代是20世纪杰出的分析学家,也是他所在的时代英国最杰出的数学家,他的一个数学家的独白表达了他对数学的看法,影响颇广。他也是一个唯美主义者,他认为“美是(数学的)第一道检验:难看的数学在这个世界上没有长驻之地。”

狄拉克认为,“物理定律必须有数学的美,上帝用美丽的数学创造了这个世界。”狄拉克方程就是一个典型的例子,它是个很有名的方程,杨振宁对它也是非常赞叹的,专门有文章提到这件事情,就是利用这个方程,人们发现了正电子。当初根据已有的实验结果来讲,它的方程不是这样的。但他认为根据实验结果得出的方程不美,所以就给修改了,修改之后很多东西又解释不了,他就大胆地预言应该还有一个例子没有发现,后来果然通过实验发现了。他对这个公式当然也是非常的喜欢。也有一个很牛的物理学家费曼,课讲的非常好,有次大概因为开会,这两个人(费曼和狄拉克)碰在一起了,长时间的沉默之后,狄拉克就冒了一句话,“我有一个方程,你有吗?”估计费曼当时非常的郁闷。物理学家也好,数学家也好,独特的人是非常多的,英文有个词叫eccentric(中文译为怪人),在我们国家对eccentric好像没那么宽容,西方文化对他们要宽容一些。

罗素说:“数学,如果正确地看,不但拥有真理,而且也有至高的美。”罗素是数学家,也是哲学家,获得过诺贝尔奖文学奖。他所写的《西方哲学史》从一个哲学家的角度,而非哲学史家的角度看待西方的哲学史,那独特的视角、脉络清晰,文笔也非常的流畅,但又不乏幽默,所以他对美的认知自然有非常广阔的背景。

如果你觉得数学不美的话,从某种意义上讲我不太建议你去学数学,或者你至少培养了美感之后再去学数学。数学美的含义到底是什么?这个问题提得多了之后,我觉得就要想一想它到底什么内容?后来我发现它大概有以下的内容:形式上要清晰、简洁,还有就是要简单、原创、新颖。不新颖的话,老生常谈,不会有美的感觉;还有就是很优美,以及一个很重要的就是不同对象之间的联系,这一点大家以前可能没有意识到其实是非常重要的。它的内涵必须要非常深刻、重要,还有基本和蕴意丰富,从这个基本的对象出发,能解释很多其他的东西。它的证明要清晰、干净利落、巧妙。

我们用一些例子来说明一下这些观点。第一个就是勾股定理,勾三股四弦五,我们常常理解起来就是32+42=52这样一个等式而已。但实际上它揭示了3、4、5这三个数的联系,这是非常重要的。勾股定理我们知道,三角形的直角边的平方和等于斜边的平方,以前我们理解起来,就是这两个边能够求出第三边,其实这只是它价值很小的一部分,更重要的是这三个边之间的联系。我国古代赵爽给了一个很漂亮的证明,他把四个直角三角形拼起来得到一个大的正方形,里面包含一个小的正方形,比较一下面积就能够得到勾股定理的证明。这里你能感受到这个证明的清晰、干净、利落和巧妙,和一种美感。定义的本身也是非常简洁优美的,它的内涵是非常丰富的。

比方说我们应用这个定理,我们就知道,平面上以原点为圆心、半径为r的方程,它就是一个很漂亮的方程,x2+y2=r2。关于它的蕴意的丰富,我们其实可以从这里提出很多的问题来,这些问题在中学就可以让老师告诉学生,但是一般老师好像并没有这样启发学生。比方说什么样的正整数能够成为直角三角形的边长?这样的问题有趣,但还不算太难。另一个问题,如果边长都是整数,它的直角三角形面积是不是也是整数?这也比较简单。到了第三个问题,你就会发现它是惊人的难,如果直角三角形的边长都是有理数,什么情况下它的面积是整数?我们可以举一个例子,3/2、20/3、41/6,它是一个直角三角形的三个边长,它的面积是5。看起来这个问题好像不太简单,这个问题其实已经有一千年的历史,是古埃及人提出来的。157就是这样一个整数,以157为面积的最简单的有理直角三角形的三个边长,大家可以看一下,分子分母都会有40多位。大家可能想不到这里面会有这么复杂的数据在这里头,你更想不到这个问题它会和BSD猜想(编注:全称Birch and Swinnerton-Dyer 猜想)联系在一起。BSD猜想到目前为止谁也没能够证明它,已有的结果离完全解决遥远得很,因为它是关于椭圆曲线的一个问题,也是克雷数学研究所几个千禧年的问题之一。换句话说如果你能够证明它,能拿到100万美元,也有着享誉全世界的学术声誉。

我们前面提到过,欧几里得的一个证明说素数有无穷多个。素数是一个数学的基本对象,里面神秘的东西非常的多。欧几里得证明同样干净利落,富有美感。假设这个结论不对,只有有限个素数,那我把这有限个素数乘起来再加1,那这个新的数M,前面N个素数都不会是它的因子。所以M的素因子就会和前面那n个素因子不一样,这是一个矛盾,所以素数有无穷多个,这个定理就非常完美的被证明,好像就没什么事情可以做了。但数学家他从来都不会这样考虑问题,就像庞加莱所说:“我们从来没有完全理解过一个问题,我们只是对这个问题理解的更深了一点、更多了一点。”素数看起来很容易明白,但可能是数学里面最神秘、最难以琢磨的一个对象。你会有很多问题接二连三的产生,比方说素数在自然数中间占有多大的比例?这个问题很难回答,你可以把它变得更容易琢磨一点,就1到N之间有多少个素数?这个问题到现在为止没有一个人能够回答。关于素数有无穷多个,后来欧拉有个更好的证明,欧拉的证明对数学产生了一个巨大的影响,包括产生了欧拉函数(Euler'totient function)等等,今天我们不会有时间谈这些。

还有一个看上去非常简单的问题——哥德巴赫猜想,每个大于2的偶数都是两个素数的和,比方说6可以写成3+3,20可以写成13+7等等,但是谁也没有能够证明这个结果。到目前为止最好的结果还是四、五十年前我国数学家陈景润做的,他证明了“1+2”,它的含义就是充分大的偶数都能够写成一个数字加上另一个数,另一个数的素因子不超过两个。陈景润的这项工作随着徐迟的报告文献传遍我国大江南北,敬仰、爱慕的信件如雪片般的飞过来,这个盛况后来再也没有出现过。徐迟报告文献的副产品就是,大家都知道数学家连1+1都弄不清楚,原来1+1还是这么高深的数学。

曾有人和我说起陈景润的工作,他是完全从字面上来理解“1+2”的。我试图给他解释陈景润工作中“1+2”的含义,他听后斜看了我一眼,说我不懂。我当时无语,觉得做科普还是很不容易的,同时也发现人们是多么的执着于自己不合事实的理解,可能这和他的自尊心、心智安全感也是分不开的。

另一个看起来简单的问题就是孪生素数猜想,比如3和5,41和43,他们都是相差2的素数对。它的问题是,这样的素数对有没有无限多个?2013年华裔数学家张益唐在这个问题上取得巨大的突破,他证明了存在无穷多对素数,每一对素数的差都不超过7000万。张益唐结果哄动一时,他本人在逆境中也保持对理想追求的故事也是非常励志的,他感动了世界。

讲到数学美的时候我们还可以提一个例子。前面提到过根号2不是有理数,我们可以给一个很严格的证明。假设这个结论不正确,它是两个整数的比,x=a/b,我们可以要求分子分母没有公因子,那么去分母之后得到xb=a。然后做平方得到x2b2=a2,从而就是2b2=a2,所以a肯定是偶数。然后再把2b2=a2代进去之后,会得到b也是偶数,这样就会有一个矛盾了,所以这个假设是错的,所以它必然是一个无理数。

我们在小学的时候都学过圆,也知道圆周率(π),大家都计算过圆周求面积等等,不过好像没有想过圆周率这个数是不是有理数或者无理数,这里反应一个问题就是我们提问题的能力是比较弱的。不知道大家注意到没有,很多的问题都是外国人提出来的,我们自己提的问题或者我们自己开创的理论是比较少的,这其实反应出来我们思维上的一个局限,愿意跟随而不愿意开创。

π这个数不仅是一个无理数,而且还是个非常无理的数,它是一个超越数。这个事情到1882年才由林德曼证明,他也证明了古希腊的画圆为方的问题是不可能的。

以上文章观点仅代表文章作者,仅供参考,以抛砖引玉!

}

我要回帖

更多关于 数学逻辑题目 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信