有东方红履带式拖拉机拖拉机的差速转向的变速箱设计方案吗?

1688.com,阿里巴巴打造的全球最大的采购批发平台
1688/淘宝会员(仅限会员名)请在此登录
cbulogin.center.et2Server is OK输入关键字:
热门关键字:
当前位置: &
159 &条符合
按产地筛选:
上海(33)河南(23)湖南(21)浙江(19)山东(17)河北(15)
按公司筛选:
更多筛选:
显示全部内容
仅显示易售宝会员
&&产品信息描述
易售宝指数
简介:东方红-C902履带式拖拉机是一拖公司根据市场需求研制开发、适用于农田作业兼顾推土作业的经济型履带式拖拉机。...
产地:河南 洛阳市
简介:外型尺寸mm(长×宽×高):×1900配套柴油机型号(功率kw)1100型(11.3)吨百公里燃油消耗率L:Q2.8标定牵引力N:2000最大爬坡度%R18...
产地:山东 聊城市
简介:〔在线客服QQ:〕同城富婆找男人在线QQ:2. 哪里找到富姐包养,富姐会所可供男人找到富姐包养.想做长期,...
产地:山东 潍坊市
简介:橡胶履带行走机构,传动简单,行走平稳安全;接地面积大,抗下陷性强,具有良好的田地间通过性;对田地基破坏性小,保护了渗水层,养田性能显著;结构紧凑,性能...
产地:江苏 常州市
简介:凯斯STEIGER385Q四履带拖拉机的发动机额定功率为385hp,采用凯斯专利的四履带技术,与同类履带拖拉机相比工作状态下的接地压力更低,低湿地作业的通过性更好。
...
产地:黑龙江 哈尔滨市
简介:湖南-30/40/50/60轮式拖拉机产品介绍:1、底盘强度大,行星减速启动电机,启动性能好,动力强劲;2、变速箱及后桥全部采用啮合套换档,换档操纵轻便灵活,永不脱...
产地:湖南 衡阳市
简介:NF-502型履带拖拉机,是为解决水田保护性耕作而设计的耕作机械,可完成起垄、开沟、培土、田间转运等作业。...
产地:湖南 郴州市
简介:星力XL80B变速箱运用在履带式拖拉机中的成功案例。...
产地:浙江 湖州市
简介:1.SF-752、SF-502轻型了履带拖拉机是为解决水田保护性耕作二研制的一款动力机械。该机结构紧凑,设计新颖,采用静液压传动先进技术,实现了无极变速;...
产地:浙江 金华市
简介:附着力强,适合大雨过后的果园、葡萄园、水涝地、稻田以及轮式拖拉机无法作业的地块;前后双动力输出,带爬行档,配套标准三点悬挂农具作业,还可配套开沟施肥搅...
产地:山东 潍坊市
简介:球铁变速箱,重量轻,强度大,抗冲击。同样用两种材质的变速箱在压力机上试压,铝制品的变速箱在4mpa(兆帕)已经压碎,而球墨铸铁材料变速箱在12mpa(兆帕)还只有变形...
产地:江苏 常州市
简介:丰收FS-752轻型履带拖拉机是为解决水田保护性耕作而设计的耕作机械。采用三角履带行走结构,通过性能好;无级变速,操纵简便,适应性强;液压转向,操纵轻便、灵...
产地:江西 南昌市
简介:亿森YSL-752履带拖拉机是一款抗下陷强,对烂、软田块的耕作起到一定保护作用的耕作机械。配备75马力动力、液压转向结构、420mm高离地间隙、400mm*48节*90宽齿履带...
产地:浙江 湖州市
简介:本公司生产各种农业机械,欢迎来电咨询。...
产地:广东 韶关市
简介:1.型号型式:4135AK-5g单列、立式、四冲程、四缸、直接喷射式;2.功率(kW):62.5;3.油耗(g/kW?h):≤335;4.主离合器: 干式、双片、碟簧常结合式;5.变速箱:4...
产地:浙江 杭州市
简介:全液压差速转向,发动机与变速器直连,4速旋耕动力输出,适应烂泥田、水田、旱土、冻土。工效:5亩/小时...
产地:湖南 长沙市
简介:我公司生产的橡胶履带底盘,运用国内最新技术,广泛应用于小型工程机械行业、农林机械行业等。如收割机、插秧机、抓木机、抛丸机、割草机、碎木机、吹雪机、运输...
产地:江苏 徐州市
简介:该机采用国内行业领先技术,设计全新的三角形履带结构,通行自如,且不破坏田底,配置液压无级变速系统,操控平台安全舒适,驾驶操作灵活简便,适用性强,配套多...
产地:湖南 常德市
&推荐会员产品
微信公众号
旗下业务:||||
电信经营许可证京ICP证150270号
京ICP备号-2
京公网安备83&
农机360网(www.nongji360.com )版权所有您好, 欢迎来到 产品展厅
当前位置:&&&东方红-2R橡胶履带拖拉机
中国一拖集团有限公司
销售部 (销售部)
联系我时,
告知来自中国农机网
商铺网址:
公司网站:
产品型号:
产品参考价:面议
厂商性质:经销商
所&&在&&地:
更新时间: 03:39:17
浏览次数:8904
东方红-1302R橡胶履带拖拉机
机械液压双功率流传动差速转向系统,方向盘操纵,可实现真正意义上的原地转向。拖拉机转向时传动功率流不中断,牵引力和车速不下降,极大地提高了整机工作效率。(12+4)挡次啮合套换挡机械传动变速箱,高、中、低、倒四个换挡区域,每个换挡区域有四种速度,整个变速箱变速范围大,适应多种农机具耕作要求,工作效率高。湿式液压操纵盘式制动器,工作可靠,操纵简便。双标准转速(540、1000r/min)动力输出轴。两组液压输出,可以为多种需要液压操纵的农机具提供液压动力。加强型液压悬挂装置,并带有农机具快速连接装置。橡胶履带行走系统,噪声低,振动小,乘坐舒适,特别适合于高速转移多的场合,实现了全路面通过性能。先进可靠的电器仪表及整机状态监控系统,为驾驶员正确操纵提供了可靠的保证。整机外形采用流线型设计,美观大方,全密封驾驶室,内装冷暖两用空调器,各种操纵杆件位置布局合理,完全可以满足人机工程要求。
中国一拖集团有限公司主营产品:农牧机械;拖拉机;收获机械
地址:河南省洛阳市建设路154号联系电话:4手机:传真:
中国农机网 设计制作,未经允许翻录必究.Copyright(C)
, All rights reserved.
以上信息由企业自行提供,信息内容的真实性、准确性和合法性由相关企业负责,中国农机网对此不承担任何保证责任。
温馨提示:为规避购买风险,建议您在购买产品前务必确认供应商资质及产品质量。
扫一扫访问手机商铺当前位置: >>
履带车辆设计计算说明
整车参数计算根据《GB/T 6 农业拖拉机试验规程第2 部份:整机参数测量》标 准要求进行计算:一、 基本参数序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 8 项目 拖拉机型号 型式 外形尺寸(长×宽×高) 发动机型号 发动机标定功率 整机重量 最高行走速度 接地比压 履带接地长 动力输出轴功率 最大牵引力 标定转速 动力输出轴转速 悬挂装置型式 爬坡能力 驱动轮半径 底盘轨距 履带最大高度 履带式 ×2250 YN38GB2 57 kW 1609Kg 12km/h 24kpa 1000mm 49.4kW 11.38kN 2600r/min 540/720r/min 后置三点置挂 &300参数内容275mm 1050mm 860mm二、质量参数的计算1、整备质量M0 为1825kg 2、总质量M总 M总=M0+M1+ M2 ==2200 kg M1载质量:300kg M2驾驶员质量:75kg3、使用质量:M总=M0+ M2 =0 kg10 4、质心位置 根据《GB/T 6 农业拖拉机试验规程第15部份:质心》标准要求进 行计算: 空载时:质心至后支承点的距离A0=830mm 质心至前支承点的距离B=610mm 质心至地面的距离h0=450mm 满载时:质心至后支承点的距离A0=605mm 质心至前支承点的距离B=812mm 质心至地面的距离h0=546mm 5、稳定性计算 a、保证拖拉机爬坡时不纵向翻倾的条件是:A0 h0 >δ =0.7 (δ 为滑转率)空载时:830/450=1.84>0.7 满载时:605/546=1.11>0.7 满足条件。 b、保证拖拉机在无横向坡度转弯时,不横向翻倾的条件是:a 2h >δ =0.7a―轨距, a=1200mm h―质心至地面距离mm空载: >0.7 2 ? 450 满载: >0.7 2 ? 546 故拖拉机在空、满载运行中均能满足稳定性要求。三、发动机匹配根据《GB/T 7 中小功率内燃机第1 部份:通用技术条件》标准要 求进行计算:11 XJ―782LT履带式拖拉机配套用昆明云内发动机, 型号为: YN38GB2型柴油机, 标定功率为57kW/h,转速为2600r/min. (1)最高设计车速Vmax=8 km/h,所需功率:Pemax = ( pf + pw )kw1 ? m ? g ? f ? vmax Cd ? A ? V 3max ? ? ( ) ? ( ) ? km n?
? ?? 1 ? 2200 ? 9.8 ? 0.02 ? 8 0.9 ?1.4 ?1.15 ? 83 ? ( ) ? ( ) ? 0.9 ?
? ?1 n=6.188kW (2)根据柴油机全负荷速度特性,最大扭矩点的低速档行车速度 V2=4km/h。选用V2=4km/h,最大爬坡度为25%时,计算所需功率:pemax = ( pf + pi +pw )kw? m ? g ? i ?max ?va Cd ? A ?Va3 ? 1 ? m ? g ? f ? va ) ? ( ) ? ( ) ? ? km n ? 140 ?1 n1 ? 2200 ? 9.8 ? 0.02 ? 8 2200 ? 9.8 ? 0.25 ? 4 0.9 ?1.4 ?1.15 ? 43 ? ? ( ) ? ( ) ? ( ) ? 0.9 ? 140 ? ?=6.948kw 上述两式中:Pf ――滚动阻力消耗的功率; P ――空气阻力消耗的功率;wPi ――坡度阻力消耗的功率;η ――传动效率系数,取η =0.9;f――滚动阻力系数,取f=0.02; Cd ――空气阻力系数,取Cd =0.9;12 A――拖拉机前进方向迎风面积A=B×H(宽×高)= 1.40×1.15V ――拖拉机取低档速度V =4km/h;a ai ――最大爬坡坡度,i =25%;max maxG――拖拉机总质量,G总 =2200kg。(注:表示履拖在工作状态) 经计算拖拉机组满载时以最高时速行驶所需功率Pemax和低档速度爬25%的坡 时,所需功率均小于YN38GB2柴油机的标定功率57kW,并有一定功率储备,故能 够满足设计要求。五、履带式底盘的设计与确定1、履带底盘的说明: 底盘是拖拉机的重要部件,它对整个装置起着支撑作用。所以根据农用履 带式拖拉机对整个装置进行较完整的配合与加工等一系列的设计。 履带行走装置有“四轮一带”(驱动轮,支重轮,导向轮,拖带轮或张紧 轮,以及履带),张紧装置和行走机构组成。 机械行走时,驱动轮在履带紧边产生一个拉力, 力图把履带从支重轮下拉出。 出于支重轮下的履带与地面有足够的附着力,阻止履带的拉出,迫使驱动轮卷绕 履带向前滚动, 导向轮把履带铺设到地面,从而使机体借支重轮沿履带轨道向前 运行。 大功率轮式拖拉机机重一般在kg, 接地面积比履带拖拉机小,因 此接地压力较大。经数年耕作后, 在土壤的耕层下面将生成硬底层, 不利于土 壤的蓄水保墒和作物的生长。 即使经过深度翻耙, 依然会保持碎小的板结硬块, 土壤的显微结构遭到了破坏。附着性能差, 滑转率高。 橡胶履带拖拉机牵引力大, 适合重负荷作业( 如耕、耙等) , 接地比压小,13 对农田压实、破坏程度轻, 特别适合在低、湿地作业, 而且除田间作业外, 还 在农田基本建设和小型水利工程中用作推土机, 综合利用程度较高。 依据轮式与大功率履带机械的特点,以其以上所叙述的比较分析,综合考 虑后得出采用:三角形式的“四轮一带”橡胶履带行走装置。 履带整机参数初步确定以后,应进行计算该履带机械的基本性能是否满足 预期要求,整机参数选择是否合理。这里主要是关于牵引性能的计算。 2、牵引功率计算: 根据《GB/T 6 农业拖拉机试验规程第9部份:牵引功率试验》标 准要求进行计算: 计算工况:计算时所用的工况一般为:在使用重量状态与水平区段的茬地 上(对旱地是适耕适度的茬地,对水田是中等泥脚深度的茬地),带牵引负荷 (牵引线与地面平行)全油门等速行驶。 (1) 履带式传动的驱动力Pq 履带传动 p q ?meiηc rdqkgf式中: Me ――发动机转矩kgf;i?――各档总传动比;nc ――各档总传动效率; rdq ――驱动轮动力半径m; nq ――履带驱动段半径效率,计算时一般去取nq =0.95。 Gsmax=2L式中:GsmaxoGsmax=1.5PTN ;PTN =(1.1-1.2)PT 。--―最大使用重量;14L ――履带接地长度; b――履带板宽度;qp ――一般为0.35~0.5 kgf/cm PTN ――额定牵引力; PT ――牵引力。2;根据(2)中的活动阻力Pf ,经计算即可得P )q经计算后得结果Pq=12.775KN. (2) 履带式传动的活动阻力PfPf =fG kgfs式中: Gs――使用重量(kgf);f ――履带式一般取0.1。 经计算后得结果Pf =1.90KN (3) 行驶速度v n e rdq km / h 理论速度 v 1 = 0.377 i∑ 实际速度v=vl (1-δ ) km/h 式中: n ――发动机转速;er ――驱动轮动力半径;dqiΣ ――驱动轮轮滑转率(履带式一般取0.07)。 经计算后得结果v=(1.15~6)km/h (4)履带式传动的牵引效率nT 式中:nc ――各档的总传动效率; nf ――滚动效率; nδ ――滑转效率; nq ――履带驱动带效率(一般取0.95) 。15 经计算后得结果nT =0.75 (5) 履带机械的附着力PΨ δ (要求: 附着力应大于或等于履带行走机构的牵 引力且大于等于各阻力之和。 )PΨ δ =Ψ δ GΨ 式中:Ψ δ ――一般取0.75;GΨ ――取1900KG。经计算后得结果PΨ δ =14.25KN (符合要求)3、转向最大驱动力矩的分析与计算: 根据《GB/T
林业轮式和履带式拖拉机试验方法》标准要求进行 计算: (1) 履带转向时驱动力说明: 履带行走装置在转向时 , 需要切断一边履带的动力并对该履带进行制动 , 使其静止不动, 靠另一边履带的推动来进行转向 , 或者将两条履带同时一前一 后运动, 实现原地转向, 但两种转向方式所需最大驱动力一样。 因此以机器单条 履带制动左转为例, 见图:图5-2 履带转左向示意图左边的履带处于制动状态,右边履带的推动下,整台机器绕左边履带的中心 C1点旋转,产生转向阻力矩Mr,右边履带的行走阻力Fr/2 。一般情况,履带接地长 度L和履带轨距B 的比值L/ B≤1.6。同时, L/ B 值也直接影响转向阻力的大小, 在不影响机器行走的稳定性及接地比压的要求下 ,应尽量取小值,也就是尽量缩16 短履带的长度,可以降低行走机构所需驱动力。 (2) 转向驱动力矩的计算转向阻力矩是履带绕其本身转动中心O1(或O2)作 相对转动时,地面对履带产生的阻力矩,如图所示,O1、O2 分别为两条履带的瞬 时转向中心。 为便于计算转向阻力矩Mr 的数值,作如下两点假设:(1)机体质量平均分配 在两条履带上,且单位履带长度上的负荷为:q= m 2L式中:M-总质量(kg); L-履带接地长度(m)。 经过计算: q ?G 1900 ? ? 593.75(kg / m) 2 L 2 ?1.6形成转向阻力矩Mu的反力都是横向力且是均匀分布的。履带拖拉机牵引负荷 在转向时存在横向分力,在横向分力的影响下,车辆的转向轴线将由原来通 过履带接地几何中心移至O1O2 ,移动距离为x 。0图5-3 履带转向受力图根据上述假设, 转向时地面对履带支承段的反作用力的分布为矩形分布。在 履带支承面上任何一点到转动中心的距离为x, 则微小单元长度为dx,分配在其 上的车体重力为qdx,总转向阻力矩可按下式:L ? x0 ? x0 ? L ? 2 2 M u ? 2? uqxd x ? uqxd x? ? ? ? 0 ? 0 ? ?式中:U-转向阻力系数。17 u=u max R 0.85 +0.15 B= 0.45u max式中:-车辆作急转弯时转弯的转向阻力系数;B―履带轨距。)L ? x0 ? x0 ? L ? uGL 2 ? uqxdx ? ? 2 uqxdx ? 将式 M u ? 2? ? ? 代入上式积分得并简化得: M u = 4 0 0 ? ?即: M u ?uGL 0.45 ? ? ? 342 N .m 4 4(3)转向驱动力矩(假设机器重心与履带行走装置几何中心相重合)把转向半径B B R ≥ 和0 ? R ≤ 分别考虑。 2 2 B 1)当转向半径 R ≥ 如下图所示,两侧履带都向前运动,此时两侧履带受地 2面摩擦阻力朝同一方向(即行驶的反方向),外侧、内侧履带受力分别为:图5-4 右转向示意图2)当转向半径0 ≤ R ≤B 如下图所示,此时两侧履带受地面摩擦阻力朝反 2方向,外侧、内侧履带受力分别为:18 图5-5 左转向示意图式中:F ,F -分别为内侧前进阻力和驱动力;f1 f1F ,F -分别为外侧前进阻力和驱动力。q1 q2考虑机体的重心在中心位置,所以履带的前进阻力 为:F =F =G ff1 f21 2式中:f ― 履带滚动阻力系数1 (即F =F = Gf =1460 N) 2f1 f2转向时的最大驱动力矩为:{Fq1, Fq2} ?r M =maxmax式中:r―驱动轮节圆直径。B 3)大半径区 R〉 转向行驶时主动轮上的力: 2Fq 2 ?G ? ?? ? ?? f ? ? 2 ? 2 ? G ? ?? ? ?? f ? ? 2 ? 2 ?Fq1 ?B 小半径区0 ≤R ≤ 转向行驶时主动轮上的力: 2Fq 2 ?G ? ?? ? ?? f ? ? 2 ? 2 ? G ? ?? ? ?? f ? ? 2 ? 2 ?Fq1 ? ?式中:λ ―转向比, λ =L B转向时的最大驱动力矩为:Mmax =max {Fq1, Fq2} ×r经过以上介绍及公式计算得:Mu=396N.m;B B 分别计算转向半径 R〉 和0 ≤R ≤ 的情况: 2 219 得到:Mmax =Fq2 ×r =1733.1N.m. 得主动轮上的最大的驱动力及力矩为:M =Fq2 ×r =1733.1N.m所得结果相同。max4、传动装置的设计与计算 (1)履带的选择 履带支承长度L,轨距B和履带板挂宽度b应合理匹配,使接地比压,附着性 能和转弯性能符合要求。 根据本机的设计参数,确定履带的主要参数为整机的重 量。本机的初定整机重量为:1.9t.L 表示为接地长度,单位m,h 表示履带的高度,单位m,G表示整机重量,单0 0位为t。经验公式:L ≈ 1.07 3 G =1.07×(1. 9)^(1/3)=1.325 m0取L =1225 mm0L≈L +0.35h =×860=1901mm0 0L0 ≈ 1.07 B即B≈1495mmb ≈ 0.25 ~ 0.3 即b≈400~480 mm 取b=460 mm L0履带节距t 和驱动轮齿数z应该满足强度、刚度要求。在此情况下,尽量选0择小的数值,以降低履带高度。 根据节距与整机重量的关系:t =(15~17.5) 4 G ,其中t 的单位为mm,G的单0 0位为kg. L’表示履带全长 则 L' ? 2 L0 ?zt 0 ? 1 2 ? ? ? ~ ?t 0 ? 2? =4680mm 2 ?2 3?根据计算的与实际的资料:选型号为52节,每节90mm,宽度400mm的履带。 (2)接地比压: 参照《GB/T
液压挖掘机试验方法》标准要求进行计算:拖拉机 本身的重力很大,很容易陷入松软的土地中,加上履带后增大了与地面的 接触面积,减小了压强;20 Ea ?gnM 2000W 4 L?9.8 ?
? 0.4 ? 1.6=14.55KPa L ――履带接地长度,单位为mEa ――接地比压,单位为KPa gn ――标准重力加速度,9.8m/S2M――工作质量,单位为Kg W4 ――履带板宽,单位为m五、驱动轮的计算目前, 履带啮合的设计标准 , 各种齿形的设计方法很多 , 极不统一, 主要 有等节距啮合方式、 亚节距啮合方式和超节距啮合方式。 等节距啮合主要指履带 节距与链轮节矩相等。 在等节距啮合时, 履带啮合副是多齿传动, 履带牵引力由 啮合各齿分担, 各个齿所受的负荷较小, 此时啮合平稳、 冲击振动小, 使用寿命 较长。 但在实际中, 等节距啮合只是一个理论概念, 因为即使在设计上使履带与 链轮节距相等, 履带在使用过程中将产生节距变化(如弹性伸长, 履带销和销孔 磨损伸长等), 啮合实际上为超节距啮合。且因图纸标注公差、制造误差等使履 带在一定范围内波动 , 履带与链轮的啮合要么是超节距 , 要么是亚节距, 等节 距啮合实际上很难存在于啮合过程中。 在亚节距啮合过程中, 链轮与履带销之间 力的传递仅由即将退出啮合的一个链轮齿来完成, 但对于频繁改变方向的机器, 在减轻启动冲击方面很有利, 而且随着亚节距量的增加,作用更加明显。但在退 出啮合时, 履带销处于迟滞状态, 严重时甚至由于运动干涉而不能退出啮合。 因 此, 在设计过程中应根据工作工况, 灵活采取相适应的设计方法 , 使履带销顺 利进入和退出啮合, 减少接触面的冲击; 使齿面接触应力满足要求, 减小磨损;21 使履带节距因磨损而增大时仍能保持工作而不掉链等。 因此, 综上考虑驱动轮选 用链轮的设计方案。 1. 确定驱动轮主要尺寸(则根据相关数据得): 分度圆直径d= p 84 = =400mm o 0. sin z p 84 = =395mm o 0. tan z齿顶圆直径d=d =d+1.25p-dr =400+1.25×84-48=457 mmamax齿根圆直径d = d ?? ?1 ?amin?1.6 ? ? 1.6 ? ? p ? d r ? 400? ?1 ? ? ? 84 ? 48 =427.6mm z ? ? 15 ?da =(427.6 ~457)mm,根据相关数据取da =448 mm分度圆弦高df =d-dr=400-48=352mmhamax=0.8 ? 0.8 ? ? ? ? 0.625? ? p ? 0.5d r ? ? 0.25 ? ? ? 84 ? 0.5 ? 42 =4.48mm z ? 15 ? ? ?h =0.5(p-dr)=0.5×(84-48)=18mmaminha=(4.48 ~18)mm,根据相关数据取ha =11.5 mm2. 确定驱动轮齿槽形状 试验和使用表明,齿槽形状在一定范围内变动,在一般工况下对链传动的性 能不会有很大影响。这样安排不仅为不同使用要求情况时选择齿形参数留有了 很大余地。同时,各种标准齿形的链轮之间也可以进行互换。22 图5-6 驱动轮图 齿面圆弧半径 齿沟圆弧半径rer =0.008dr(z2 +180) r =0.12dr(z+2)emax eminrir =0.505 dr +0.069 3 drimaxr =0.505 drimin则根据相关数据得: 齿面圆弧半径remax=0.008dr (z2+180)=155.52mm remin =0.12dr (z+2)=98mmr re=(98~155.52) mm齿沟圆弧半径r =0.505dr +0.069imax imin3dr =24.49 mmr =0.505dr =24.24 mm ri =(24.24 ~24.49) mm齿沟角amax ? 140o 90o ? 134o z 90o ? 114o zamin ? 120o六、变速箱及各档速度的计算1.变速器各档位的关系动力输出旋耕变速一档23二档 轴 一 级 二 级 三 级 四 级 五 级 六 级齿编 号齿数 z模数 传动 m 比转数 r/min齿编 号齿数 z模数 m传动 比转数 r/min2、变速器结构设计与动力传递分析变速器主要由机械式变速传动装置与静液压无极变速机构集成,主要包括箱 体,其箱体上安装有动力输入部分、动力输出轴减速部分、动力输出轴部分、液 压无极变速换向部分、机械换挡部分、牙嵌式离合器转向控制部分、牙嵌式离合 器转向传动部分、 左侧履带驱动部分及右侧履带驱动部分,而箱体安装在发动机 动力输出位置处。 液压无极变速换向部分中,液压马达安装于箱体一侧,液压传动轴一端安装 于箱体内,另一端插装于液压传动花键轴内,液压传动花键轴安装于箱体内,且 马达动力输入轴插装于液压传动花键轴内,马达动力输入轴、液压传动轴分别与 液压传动花键轴花键配合并传递动力,从动锥齿轮通过花键套装于液压传动轴 上, 马达动力输出齿轮套装于马达动力输出轴上;从动锥齿轮与动力输入部分中 的主动锥齿轮啮合。 机械换挡部分中,换挡主动轴与换挡从动轴分别安装于箱体内,换挡主动齿 轮套装于换挡主动轴, 并与马达动力输出齿轮啮合,在马达动力输出齿轮的驱动 下换挡主动齿轮带动换挡主动轴旋转。 牙嵌式离合器转向控制部分中,左牙嵌式离合器控制部分与右牙嵌式离合器 控制部分关于牙嵌式离合器主动齿轮对称设置, 牙嵌式离合器主动齿轮套装于牙 嵌式离合器主轴上, 且牙嵌式离合器主轴左端安装于左端盖内,左端盖紧固安装 于箱体上, 左控制摇臂用于对左离合套和左多片式制动器进行控制,左多片式制24 动器安装于箱体内, 左离合套与左多片式制动器配合安装,左复位弹簧设置在左 多片式制动器上方, 左离合套同时与左牙嵌式离合器传动双联齿轮、牙嵌式离合 器主动齿轮的左侧内齿圈啮合, 将牙嵌式离合器主动齿轮的动力传递给左牙嵌式 离合器传动双联齿轮; 而牙嵌式离合器主轴右端安装于右端盖内,右端盖紧固安 装于箱体上, 右控制摇臂用于对右离合套和右多片式制动器进行控制,右多片式 制动器安装于箱体内, 右离合套与右多片式制动器配合安装,右复位弹簧设置在 右多片式制动器上方, 右离合套同时与右牙嵌式离合器传动双联齿轮、牙嵌式离 合器主动齿轮的右侧内齿圈啮合, 将牙嵌式离合器主动齿轮的动力传递给右牙嵌 式离合器传动双联齿轮。1 动力输入轴 2 箱体 3 静液压无极变速输入轴 4 齿轮换挡机构 5 10 牙 嵌式离合转向机构 6 9 左右侧中间传动 7 8 左右驱动总成 11 静液压驱动系统 图5-7 变速器结构图25 图5-8动力传递路线图七、燃油经济性计算根据《GB/T
林业轮式和履带式拖拉机试验方法》标准要求进行 计算: 1.平均小时工作油耗 Gfp ?GkGfk ? tk?ta? 5 kg/h26 式中:G ――拖拉机进行单项作业时的平均小时工作油耗;单位:kg/hfpGk ――拖拉机进行单项作业时的总油耗;单位:kg G ――拖拉机发动机空转小时油耗;单位:kg/hfk通过计算,满足要求。八、制动性能计算根据《GB/T 6 农林车辆制动性能的确定》标准要求进行计算: 1、制动力 总质量:M0=2200Kg=21560N F=21560 ? 0.7=15092N 2、制动距离s? R ? V02 ? M 0 ? 0.15V0?=2.85m 式中:δ ――滑转率取0.7V ――制动初速度,V =7km/h=1.94m/s.0 0制动距离满足要求。九、电源电路设计采用柴油机驱动,电源系统主要包含蓄电池、启动电路、充电电路、发动机 状态监测电路(水温、机油压力、转速)、仪表、灯光、喇叭等。其中,蓄电池 采用两个12V60AH并联组成24V供电电路,其所有电器系统采用24V供电。27 图5-9 电源系统图十、液压系统设计共包含两组液压装置。 一组为静液压驱动装置 (注: 该机构选型后外协采购, 主要由液压泵、液压马达、调速手柄、滤清器、油箱等组成闭式系统),另一组 为转向、举升液压装置组成,如下图所示:。28 图5-10 液压系统图29
更多搜索:
All rights reserved Powered by
文档资料库内容来自网络,如有侵犯请联系客服。拒绝访问 | www.vipzhuanli.com | 百度云加速
请打开cookies.
此网站 (www.vipzhuanli.com) 的管理员禁止了您的访问。原因是您的访问包含了非浏览器特征(924394-ua98).
重新安装浏览器,或使用别的浏览器}

我要回帖

更多关于 东方红履带式拖拉机 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信