30″trunnion ball valvee (MP: 0.562″– X60), FB, WE, 2.7m Stem, Gas Over Oil Actuator,

Index of /bin/windows/contrib/2.14
Index of /bin/windows/contrib/2.14
Apache/2.4.10 (Debian) Server at cran.r-project.org Port 4432015 Hackaday Prize: Quarterfinalists | Hackaday.io
2015 Hackaday Prize: Quarterfinalists
Projects that were officially submitted to the 2015 Hackaday Prize
curated byAccess denied |
used Cloudflare to restrict access
Please enable cookies.
What happened?
The owner of this website () has banned your access based on your browser's signature (3c7ace8cc2a47c2e-ua98).&&&&DOI: 10.-013-1329-2
REVIEW ARTICLE
Mesoporous zeolites as efficient catalysts for oil refining and natural gas conversion
Jie ZHU1,2, Xiangju MENG1, Fengshou XIAO1()
1. Department of Chemistry, Zhejiang University, Hangzhou 310028, C 2. College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
(862 KB) &
Abstract Zeolites have been regarded as one of the most important catalysts in petrochemical industry due to their excellent catalytic performance. However, the sole micropores in zeolites severely limit their applications in oil refining and natural gas conversion. To solve the problem, mesoporous zeolites have been prepared by introducing mesopores into the zeolite crystals in recent years, and thus have the advantages of both mesostructured materials (fast diffusion and accessible for bulky molecules) and microporous zeolite crystals (strong acidity and high hydrothermal stability). In this review, after giving a brief introduction to preparation, structure, and characterization of mesoporous zeolites, we systematically summarize catalytic applications of these mesoporous zeolites as efficient catalysts in oil refining and natural gas conversion including catalytic cracking of heavy oil, alkylation, isomerization, hydrogenation, hydrodesulfurization, methane dehydroaromatization, methanol dehydration to dimethyl ether, methanol to olefins, and methanol to hydrocarbons.
Corresponding Authors:
XIAO Fengshou,Email:fsxiao@&&&
Issue Date: 05 June 2013
&Cite this article: &&
Jie ZHU,Xiangju MENG,Fengshou XIAO. Mesoporous zeolites as efficient catalysts for oil refining and natural gas conversion[J]. Front Chem Sci Eng,
): 233-248.
Articles by authors
Fig.1&&Schematic illustration of 3Dom-i zeolite templating from 3Dom carbon. Reproduced by permission of Ref []. Copyright 2011 American Chemical Society
Fig.2&&HRTEM of as-synthesized (a) and calcined (b) MFI nanosheet templated from C surfanctant. Reproduced by permission of Ref. []. (Copyright 2009 Nature Publishing Group)
Fig.3&&Proposed reaction of 1,3,5-triisopropylbenzene cracking
Fig.4&&Catalytic properties of conventional ZSM-5 and meso ZSM-5 employed in the cracking of TIPB (1,3,5-triisopropylbenzene) as a probe reaction: (a) deactivation behavior at 500°C, and (b) catalytic activities (conversions) at different temperatures. Reproduced by permission of Ref []. (Copyright 2011 American Chemical Society)
Fig.5&&Proposed reaction of benzene alkylation with ethylene
Fig.6&&Catalytic conversions (. Wt-%) and selectivities (. Wt-%) in the alkylation of benzene with 2-propanol with various zeolites samples as a function of reaction time (Reaction temperature: 200°C; 4 ∶ 1 benzene/2- reaction pressure: 2.0 MP, weight hourly spare velocity (WHSV): 10 h). Reproduced by permission of Ref. []. (Copyright 2006 Wiley)
Tab.1&&Catalytic activities in isomerization of linear paraffins over mesoporous zeolite catalysts
Fig.7&&Dependence of (a) the isomer selectivity, (b) the percentage of di-branched C isomers in total C isomers (denoted as DB), and (c) the cracking selectivity of -octane in -octane-hydroisomerization system on -octane conversion over conventional Pt/H-SAPO-11 and mesoporous Pt/H-SAPO-11-HI catalysts. Reproduced by permission of Ref []. (Copyright 2012 Elsevier)
Fig.8&&Dependence of (a) the 4,6-DMDBT conversion and (b) the remaining sulfur content in 4,6-DMDBT-hydrogenation system on reaction time over Pd/HY-M, Pd/Hbeta-M, Pd/HZSM-5-M, Pd/HY, Pd/NaY-M and Pd/γ-AlO catalysts. Reproduced by permission of Ref. []. (Copyright 2011 American Chemical Society)
Fig.9&&(a) Catalytic performances of mesoporous Mo/HMCM-22-HS and conventional Mo/HMCM-22 catalysts in methane
(b) formation rates of benzene at 700°C on these two catalysts under space velocity of 1500 mL/(g?h). Reproduced by permission of Ref. []. (Copyright 2010 American Chemical Society)
Fig.10&&Stability and selectivity in methanol dehydration over ZSM-5 and ZSM-5/MCM-41 composite alkali-treated by NaOH solution 1.5 mol/L. Reproduced by permission of Ref. []. (Copyright 2012 Elsevier)
Fig.11&&Catalytic conversion of methanol to dimethyl ether (DME) over conventional CaA-0 (a) and mesoporous CaA-2 (b) zeolites at 400°C. Methanol conversion was calculated by considering DME and hydrocarbons as converted products. Reproduced by permission of Ref. []. (Copyright 2009 American Chemical Society)
Fig.12&&Product selectivity of mesoporous HZSM-5 by alkaline treatment as a representative catalyst for MTP reaction as a function of time: CH, CH, CH, aromatics, C1–C4 saturated hydrocarbons, C5 and higher hydrocarbons excluding aromatics. Reaction conditions: = 470°C, WHSV= 1 h, = 0.5 atm, HO: CHOH= 1 ∶ 1. Reproduced by permission of Ref. []. (Copyright 2008 Elsevier)
Fig.13&&(a) and (b) SEM images of the hierarchical mesoporous SAPO-34 zeolite at diff (c) SAED pattern of a horizontal meso (d) nitrogen sorption isotherms and BJH pore size distribution (inset). Reproduced by permission of Ref. []. (Copyright 2009 Royal Soc Chemistry)
Fig.14&&Coke deposition over (a) conventional MFI zeolite and (b) unilamellar MFI zeolite catalysts during MTG conversion. Catalytic conversion over the unilamellar MFI was repeatedly investigated using three different synthesis batches (red circles, black squares, open circles, respectively). The catalytic measurement for conventional zeolite was repeated twice using the same sample (red circles and black squares). The solid black lines and the dotted red and black lines are guides to the eye. Dark blue bars indicate internal (inside the micropores of the zeolite) coke content, and light blue bars indicate external coke content. Reproduced by permission of []. (Copyright 2009 Nature)
Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chemical Reviews , ):
Davis M E. Ordered porous materials for emerging applications. Nature , 91): 813-821 doi:
Cundy C S, Cox P A. The hydrothermal synthesis of zeolites: History and development from the earliest days to the present time. Chemical Reviews , ): 663-702 doi:
Hartmann M. Hierarchical zeolites: A proven strategy to combine shape selectivity with efficient mass transport. Angewandte Chemie International Edition , ):
Perez-Ramirez J, Kapteijn F, Groen J C, Domenech A, Mul G, Moulijn J A. Steam-activated FeMFI zeolites. Evolution of iron species and activity in direct N2O decomposition. Journal of Catalysis , ): 33-45 doi:
Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature , 97): 710-712 doi:
Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, Olson D H, Sheppard E W, McCullen S B, Higgins J B, Schlenker J L. A new family of mesoporous molecular-sieves prepared with liquid-crystal templates. Journal of the American Chemical Society , ):
Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science , 50): 548-552 doi:
Zhao D Y, Huo Q S, Feng J L, Chmelka B F, Stucky G D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society , ):
Davis M E. Introduction to large-pore molecular-sieves. Catalysis Today , ): 1-5 doi:
Liu Y, Zhang W Z, Pinnavaia T J. Steam-stable aluminosilicate mesostructures assembled from zeolite type Y seeds. Journal of the American Chemical Society , ):
Liu Y, Zhang W Z, Pinnavaia T J. Steam-stable MSU-S aluminosilicate mesostructures assembled from zeolite ZSM-5 and zeolite beta seeds. Angewandte Chemie International Edition , ):
Zhang Z T, Han Y, Zhu L, Wang R W, Yu Y, Qiu S L, Zhao D Y, Xiao F S. Strongly acidic and high-temperature hydrothermally stable mesoporous aluminosilicates with ordered hexagonal structure. Angewandte Chemie International Edition , ):
Xiao F S, Han Y, Yu Y, Meng X J, Yang M, Wu S. Hydrothermally stable ordered mesoporous titanosilicates with highly active catalytic sites. Journal of the American Chemical Society , ): 888-889 doi:
Han Y, Li D F, Zhao L, Song J W, Yang X Y, Li N, Di Y, Li C J, Wu S, Xu X Z, Meng X J, Lin K F, Xiao F S. High-temperature generalized synthesis of stable ordered mesoporous silica-based materials by using fluorocarbon-hydrocarbon surfactant mixtures. Angewandte Chemie International Edition , ):
Li D F, Han Y, Song J W, Zhao L, Xu X Z, Di Y, Xiao F S. High-temperature synthesis of stable ordered mesoporous silica materials by using fluorocarbon-hydrocarbon surfactant mixtures. Chemistry (Weinheim an der Bergstrasse, Germany) , ):
Tao Y S, Kanoh H, Abrams L, Kaneko K. Mesopore-modified zeolites: Preparation, characterization, and applications. Chemical Reviews , ): 896-910 doi:
Xia Y D, Mokaya R. Are mesoporous silicas and aluminosilicas assembled from zeolite seeds inherently hydrothermally stable? Comparative evaluation of MCM-48 materials assembled from zeolite seeds. Journal of Materials Chemistry , ):
Tosheva L, Valtchev V P. Nanozeolites: Synthesis, crystallization mechanism, and applications. Chemistry of Materials , ):
Schoeman B J, Sterte J, Otterstedt J E. Colloid Zeolite Suspensions. Zeolites , ): 110-116 doi:
Freyhardt C C, Tsapatsis M, Lobo R F, Balkus K J Jr, Davis M E. A high-silica zeolite with a 14-tetrahedral-atom pore opening. Nature , 80): 295-298 doi:
Davis M E, Saldarriaga C, Montes C, Garces J, Crowder C. A molecular-sieve with 18-membered rings. Nature , 58): 698-699 doi:
Corma A, Diaz-Cabanas M J, Jorda J L, Martinez C, Moliner M. High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature , 13): 842-845 doi:
Huo Q H, Xu R R, Li S G, Ma Z G, Thomas J M, Jones R H, Chippindale A M. Synthesis and characterization of a novel extra large ring of aluminophosphate JDF-20. Journal of the Chemical Society. Chemical Communications , 1992, (12): 875-876 doi:
Sun J L, Bonneau C, Cantin A, Corma A, Diaz-Cabanas M J, Moliner M, Zhang D L, Li M R, Zou X D. The ITQ-37 mesoporous chiral zeolite. Nature , 42):
Jiang J X, Jorda J L, Yu J H, Baumes L A, Mugnaioli E, Diaz-Cabanas M J, Kolb U, Corma A. Synthesis and structure determination of the hierarchical meso-microporous zeolite ITQ-43. Science , 46):
Meng X J, Nawaz F, Xiao F S. Templating route for synthesizing mesoporous zeolites with improved catalytic properties. Nano Today , ): 292-301 doi:
van Donk S, Janssen A H, Bitter J H, de Jong K P. Generation, characterization, and impact of mesopores in zeolite catalysts. Catalysis Reviews. Science and Engineering , ): 297-319 doi:
Perez-Ramirez J, Christensen C H, Egeblad K, Christensen C H, Groen J C. Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chemical Society Reviews , ):
Egeblad K, Christensen C H, Kustova M, Christensen C H. Templating mesoporous zeolites. Chemistry of Materials , ): 946-960 doi:
Chal R, Gerardin C, Bulut M, van Donk S. Overview and industrial assessment of synthesis strategies towards zeolites with mesopores. ChemCatChem , ): 67-81 doi:
Holm M S, Taarning E, Egeblad K, Christensen C H. Catalysis with hierarchical zeolites. Catalysis Today , ): 3-16 doi:
Lynch J, Raatz F, Dufresne P. Characterization of the textural properties of dealuminated HY forms. Zeolites , ): 333-340 doi:
Triantafillidis C S, Vlessidis A G, Evmiridis N P. Dealuminated H-Y zeolites: Influence of the degree and the type of dealumination method on the structural and acidic characteristics of H-Y zeolites. Industrial & Engineering Chemistry Research , ): 307-319 doi:
Groen J C, Bach T, Ziese U, Donk A M P V, de Jong K P, Moulijn J A, Perez-Ramirez J. Creation of hollow zeolite architectures by controlled desilication of Al-zoned ZSM-5 crystals. Journal of the American Chemical Society , ):
Jacobsen C J H, Madsen C, Houzvicka J, Schmidt I, Carlsson A. Mesoporous zeolite single crystals. Journal of the American Chemical Society , ):
Kustova M, Hasselriis P, Christensen C H. Mesoporous MEL-type zeolite single crystal catalysts. Catalysis Letters , -4): 205-211 doi:
Wei X, Smirniotis P G. Synthesis and characterization of mesoporous ZSM-12 by using carbon particles. Microporous and Mesoporous Materials , -3): 170-178 doi:
Schmidt I, Boisen A, Gustavsson E, Stahl K, Pehrson S, Dahl S, Carlsson A, Jacobsen C J H. Carbon nanotube templated growth of mesoporous zeolite single crystals. Chemistry of Materials , ):
Boisen A, Schmidt I, Carlsson A, Dahl S, Brorson M, Jacobsen C J H. TEM stereo-imaging of mesoporous zeolite single crystals. Chemical Communications , 2003, (8): 958-959 doi:
Janssen A H, Schmidt I, Jacobsen C J H, Koster A J, de Jong K P. Exploratory study of mesopore templating with carbon during zeolite synthesis. Microporous and Mesoporous Materials , ): 59-75 doi:
Tao Y S, Kanoh H, Kaneko K. ZSM-5 monolith of uniform mesoporous channels. Journal of the American Chemical Society , ):
Tao Y S, Kanoh H, Kaneko K. Uniform mesopore-donated zeolite Y using carbon aerogel templating. Journal of Physical Chemistry B , ):
Tao Y S, Kanoh H, Kaneko K. Synthesis of mesoporous zeolite a by resorcinol-formaldehyde aerogel templating. Langmuir , ): 504-507 doi:
Tao Y S, Hattori Y, Matumoto A, Kaneko K. Comparative study on pore structures of mesoporous ZSM-5 from resorcinol-formaldehyde aerogel and carbon aerogel templating. Journal of Physical Chemistry B , ): 194-199 doi:
Cho S I, Choi S D, Kim J H, Kim G J. Synthesis of zsm-5 films and monoliths with bimodal micro/mesoscopic structures. Advanced Functional Materials , ): 49-54 doi:
Yang Z X, Xia Y D, Mokya R. Zeolite ZSM-5 with unique supermicropores synthesized using mesoporous carbon as a template. Advanced Materials , ): 727-732 doi:
Sakhtivel A, Huang S J, Chen W H, Lan Z H, Chen K H, Kim T W, Ryoo R, Chiang A S T, Liu S B. Replication of mesoporous aluminosilicate molecular sieves (RMMs) with zeolite framework from mesoporous carbons (CMKs). Chemistry of Materials , ):
Fan W, Synder M A, Kumar S, Lee P S, Yoo W C, McCormick A V, Penn R L, Stein A, Tsapatsis M. Hierarchical nanofabrication of microporous crystals with ordered mesoporosity. Nature Materials , ): 984-991 doi:
Lee P S, Zhang X Y, Stoeger J A, Malek A, Fan W, Kumar S, Yoo W C, Al Hashimi S, Penn R L, Stein A, Tsapatsis M. Sub-40 nm zeolite suspensions via disassembly of three-dimensionally ordered mesoporous-imprinted silicalite-1. Journal of the American Chemical Society , ): 493-502 doi:
Chen H Y, Wydra J, Zhang X Y, Lee P S, Wang Z P, Fan W, Tsapatsis M. Hydrothermal synthesis of zeolites with three-dimensionally ordered mesoporous-imprinted structure. Journal of the American Chemical Society , ):
pmid:Fan WTsapatsis M
Li H C, Sakamoto Y, Liu Z, Ohsuna T, Terasaki O, Thommes M, Che S N. Mesoporous silicalite-1 zeolite crystals with unique pore shapes analogous to the morphology. Microporous and Mesoporous Materials , -3): 174-179 doi:
pmid:. Synthesis of ordered mesoporous MFI zeolite using CMK carbon templates. Microporous and Mesoporous Materials , : 107-112 doi:
Zhu H, Liu Z, Wang Y, Kong D, Yuan X, Xie Z. Nanosized CaCO3 as hard template for creation of intracrystal pores within silicalite-1 crystal. Chemistry of Materials , ):
Xiao F S, Wang L F, Yin C Y, Lin K F, Di Y, Li J X, Xu R R, Su D S, Schlogl R, Yokoi T, Tatsumi T. Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers. Angewandte Chemie International Edition , ):
Choi M, Cho H S, Srivastava R, Venkatesan C, Choi D H, Ryoo R. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nature Materials , ): 718-723 doi:
Choi M, Srivastava R, Ryoo R. Organosilane surfactant-directed synthesis of mesoporous aluminophosphates constructed with crystalline microporous frameworks. Chemical Communications , 2006, (42):
Srivastava R, Choi M, Ryoo R. Mesoporous materials with zeolite framework: remarkable effect of the hierarchical structure for retardation of catalyst deactivation. Chemical Communications , 2006, (43):
Wang H, Pinnavaia T J. MFI zeolite with small and uniform intracrystal mesopores. Angewandte Chemie International Edition , ):
Zhu H B, Liu Z C, Kong D J, Wang Y D, Xie Z K. Synthesis and catalytic performances of mesoporous zeolites templated by polyvinyl butyral gel as the mesopore directing agent. Journal of Physical Chemistry C , ):
Fu W Q, Zhang L, Tang T D, Ke Q P, Wang S, Hu J B, Fang G Y, Li J X, Xiao F S. Extraordinarily high activity in the hydrodesulfurization of 4,6-dimethyldibenzothiophene over Pd supported on mesoporous zeolite Y. Journal of the American Chemical Society , ):
Zhu Y, Hua Z L, Zhou J, Wang L J, Zhao J J, Gong Y, Wu W, Ruan M L, Shi J L. Hierarchical mesoporous zeolites: Direct self-Assembly synthesis in a conventional surfactant solution by kinetic control over the zeolite seed formation. Chemistry (Weinheim an der Bergstrasse, Germany) , ):
Zhou J, Hua Z L, Liu Z C, Wu W, Zhu Y, Shi J L. Direct synthetic strategy of mesoporous ZSM-5 zeolites by using conventional block copolymer templates and the improved catalytic properties. Acs Catalysis , ): 287-291 doi:
Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature , 61): 246-250 doi:
Na K, Choi M, Park W, Sakamoto Y, Terasaki O, Ryoo R. Pillared MFI zeolite nanosheets of a single-unit-cell thickness. Journal of the American Chemical Society , ):
Na K, Jo C, Kim J, Cho K, Jung J, Seo Y, Messinger R J, Chmelka B F, Ryoo R. Directing zeolite structures into hierarchically nanoporous architectures. Science , 40): 328-332 doi:
Liu F J, Willhammar T, Wang L, Zhu L F, Sun Q, Meng X J, Carrillo-Cabrera W, Zou X D, Xiao F S. ZSM-5 zeolite single crystals with b-axis-aligned mesoporous channels as an efficient catalyst for conversion of bulky organic molecules. Journal of the American Chemical Society , ):
Kung H H, Williams B A, Babitz S M, Miller J T, Haag W O, Snurr R Q. Enhanced hydrocarbon cracking activity of Y zeolites. Topics in Catalysis , -2): 59-64 doi:
Haag W O, Lago R M, Weisz P B. Transport and reactivity of hydrocarbon molecules in a shape-selective zeolite. Faraday Discussions , 7-330 doi:
Garcia-Martinez J, Johnson M, Valla J, Li K H, Ying J Y. Mesostructured zeolite Y-high hydrothermal stability and superior FCC catalytic performance. Catalysis Science & Technology , ): 987-994 doi:
Tan Q F, Fan Y, Liu H Y, Song T C, Shi G, Shen B J, Bao X. Bimodal micro-mesoporous aluminosilicates for heavy oil cracking: Porosity tuning and catalytic properties. AIChE Journal. American Institute of Chemical Engineers , ):
Siddiqui M A B, Aitani A M, Saeed M R, Al-Yassir N, Al-Khattaf S. Enhancing propylene production from catalytic cracking of Arabian Light VGO over novel zeolites as FCC catalyst additives. Fuel , ): 459-466 doi:
Park D H, Kim S S, Wang H, Pinnavaia T J, Papapetrou M C, Lappas A A, Triantafyllidis K S. Selective petroleum refining over a zeolite catalyst with small intracrystal mesopores. Angewandte Chemie International Edition , ):
Wang L F, Yin C Y, Shan Z C, Liu S, Du Y C, Xiao F S. Bread-template synthesis of hierarchical mesoporous ZSM-5 zeolite with hydrothermally stable mesoporosity. Colloids and Surfaces A , -3): 126-130 doi:
Lei Q, Zhao T B, Li F Y, Zhang L L, Wang Y. Catalytic cracking of large molecules over hierarchical zeolites. Chemical Communications (Cambridge) , 2006, (16):
Christensen C H, Schmidt I, Christensen C H. Improved performance of mesoporous zeolite single crystals in catalytic cracking and isomerization of n-hexadecane. Catalysis Communications , ): 543-546 doi:
Kustova M, Egeblad K, Christensen C H, Kustov A L, Christensen C H. Hierarchical zeolites: Progress on synthesis and characterization of mesoporous zeolite single crystal catalysts. Studies in Surface Science and Catalysis , : 267-275 doi:
Shetti V N, Kim J, Srivastava R, Choi M, Ryoo R. Assessment of the mesopore wall catalytic activities of MFI zeolite with mesoporous/microporous hierarchical structures. Journal of Catalysis , ): 296-303 doi:
Christensen C H, Johannsen K, Schmidt I, Christensen C H. Catalytic benzene alkylation over mesoporous zeolite single crystals: Improving activity and selectivity with a new family of porous materials. Journal of the American Chemical Society , ):
Christensen C H, Johannsen K, Toernqvist E, Schmidt I, Topsoe H, Christensen C H. Mesoporous zeolite single crystal catalysts: Diffusion and catalysis in hierarchical zeolites. Catalysis Today , -2): 117-122 doi:
Perez-Ramirez J, Verboekend D, Bonilla A, Abello S. Zeolite Catalysts with tunable hierarchy factor by pore-growth moderators. Advanced Functional Materials , ):
van Iaak A N C, Gosselink R W, Sagala S L, Meeldijk J D, de Jongh P E, de Jong K P. Alkaline treatment on commercially available aluminum rich mordenite. Applied Catalysis A, General , ): 65-72 doi:
van Laak A N C, Sagala S L, Zecevic J, Friedrich H, de Jongh P E, de Jong K P. Mesoporous mordenites obtained by sequential acid and alkaline treatments—Catalysts for cumene production with enhanced accessibility. Journal of Catalysis , ): 170-180 doi:
Pellet R J, Casey D G, Huang H M, Kessler R V, Kuhlman E J, Oyoung C L, Sawicki R A, Ugolini J R. Isomerization of n-butene to isobutene by ferrierite and modified ferrierite catalysts. Journal of Catalysis , ): 423-435 doi:
Khitev Y P, Kolyagin Y G, Ivanova I I, Ponomareva O A, Thibault-Starzyk F, Gilson J P, Fernandez C, Fajula F. Synthesis and catalytic properties of hierarchical micro/mesoporous materials based on FER zeolite. Microporous and Mesoporous Materials , -3): 201-207 doi:
Matias P, Couto C S, Graca I, Lopes J M, Carvalho A P, Ribeiro F R, Guisnet M. Desilication of a TON zeolite with NaOH: Influence on porosity, acidity and catalytic properties. Applied Catalysis A, General , -2): 100-109 doi:
van Donk S, Broersma A, Gijzeman O L J, van Bokhoven J A, Bitter J H, de Jong K P. Combined diffusion, adsorption, and reaction studies of n-hexane hydroisomerization over Pt/H-mordenite in an oscillating microbalance. Journal of Catalysis , ): 272-280 doi:
Chao P H, Tsai S T, Chang S L, Wang I, Tsai T C. Hexane isomerization over hierarchical Pt/MFI zeolite. Topics in Catalysis , -2): 231-237 doi:
Modhera B K, Chakraborty M, Bajaj H C, Parikh P A. Influences of mesoporosity generation in ZSM-5 and zeolite beta on catalytic performance during n-hexane isomerization. Catalysis Letters , ):
Moushey D L, Smirniotis P G. n-Heptane hydroisomerization over mesoporous zeolites made by utilizing carbon particles as the template for mesoporosity. Catalysis Letters , -2): 20-25 doi:
Verboekend D, Thomas K, Milina M, Mitchell S, Perez-Ramirez J, Gilson J P. Towards more efficient monodimensional zeolite catalysts: n-Alkane hydro-isomerisation on hierarchical ZSM-22. Catalysis Science & Technology , ):
Fan Y, Xiao H, Shi G, Liu H Y, Bao X J. Alkylphosphonic acid- and small amine-templated synthesis of hierarchical silicoaluminophosphate molecular sieves with high isomerization selectivity to di-branched paraffins. Journal of Catalysis , ): 251-259 doi:
Qin B, Zhang X W, Zhang Z Z, Ling F X, Sun W F. Synthesis, characterization and catalytic properties of Y-beta zeolite composites. Petroleum Science , ): 224-228 doi:
Chica A, Diaz U, Fornes V, Corma A. Changing the hydroisomerization to hydrocracking ratio of long chain alkanes by varying the level of delamination in zeolitic (ITQ-6) materials. Catalysis Today , -4): 179-185 doi:
Fernandez C, Stan I, Gilson J P, Thomas K, Vicente A, Bonilla A, Perez-Ramirez J. Hierarchical ZSM-5 zeolites in shape-selective xylene isomerization: Role of mesoporosity and acid site speciation. Chemistry (Weinheim an der Bergstrasse, Germany) , ):
Mihalyi R M, Kollar M, Kiraly P, Karoly Z, Mavrodinova V. Effect of extra-framework Al formed by successive steaming and acid leaching of zeolite MCM-22 on its structure and catalytic performance. Applied Catalysis A, General , : 76-86 doi:
Tang T D, Yin C Y, Wang L F, Ji Y Y, Xiao F S. Superior performance in deep saturation of bulky aromatic pyrene over acidic mesoporous beta zeolite-supported palladium catalyst. Journal of Catalysis , ): 111-115 doi:
Tang T D, Yin C Y, Wang L F, Ji Y Y, Xiao F S. Good sulfur tolerance of a mesoporous beta zeolite-supported palladium catalyst in the deep hydrogenation of aromatics. Journal of Catalysis , ): 125-133 doi:
Sun Y Y, Prins R. Hydrodesulfurization of 4,6-dimethyldibenzothiophene over noble metals supported on mesoporous zeolites. Angewandte Chemie International Edition , ):
Zheng J J, Zeng Q H, Zhang Y Y, Wang Y, Ma J H, Zhang X W, Sun W F, Li R F. Hierarchical porous zeolite composite with a core-shell structure fabricated using beta-zeolite crystals as nutrients as well as cores. Chemistry of Materials , ):
Xu Y D, Lin L W. Recent advances in methane dehydro-aromatization over transition metal ion-modified zeolite catalysts under non-oxidative conditions. Applied Catalysis A, General , -2): 53-67 doi:
Su L L, Liu L, Zhuang J Q, Wang H X, Li Y G, Shen W J, Xu Y D, Bao X H. Creating mesopores in ZSM-5 zeolite by alkali treatment: A new way to enhance the catalytic performance of methane dehydroaromatization on Mo/HZSM-5 catalysts. Catalysis Letters , -4): 155-167 doi:
Chu N B, Yang J H, Li C Y, Cui J Y, Zhao Q Y, Yin X Y, Lu J M, Wang J Q. An unusual hierarchical ZSM-5 microsphere with good catalytic performance in methane dehydroaromatization. Microporous and Mesoporous Materials , -3): 169-175 doi:
Martinez A, Peris E, Derewinski M, Burkat-Dulak A. Improvement of catalyst stability during methane dehydroaromatization (MDA) on Mo/HZSM-5 comprising intracrystalline mesopores. Catalysis Today , ): 75-84 doi:
Liu H, Yang S, Hu J, Shang F P, Li Z F, Xu C, Guan J Q, Kan Q B. A comparison study of mesoporous Mo/H-ZSM-5 and catalysts in methane non-oxidative aromatization. Fuel Processing Technology , 5-202 doi:
Chu N B, Wang J Q, Zhang Y, Yang J H, Lu J M, Yin D H. Nestlike hollow hierarchical MCM-22 microspheres: synthesis and exceptional catalytic properties. Chemistry of Materials , ):
Tang Q, Xu H, Zheng Y Y, Wang J F, Li H S, Zhang J. Zhang Jun. Catalytic dehydration of methanol to dimethyl ether over micro-mesoporous ZSM-5/MCM-41 composite molecular sieves. Applied Catalysis A, General , : 36-42 doi:
Cho K, Cho H S, de Menorval L C, Ryoo R. Generation of mesoporosity in LTA zeolites by organosilane surfactant for rapid molecular transport in catalytic application. Chemistry of Materials , ):
Mei C S, Wen P Y, Liu Z C, Liu H X, Wang Y D, Yang W M, Xie Z K, Hua W M, Gao Z. Selective production of propylene from methanol: Mesoporosity development in high silica HZSM-5. Journal of Catalysis , ): 243-249 doi:
Zhu J, Cui Y, Wang Y, Wei F. Direct synthesis of hierarchical zeolite from a natural layered material. Chemical Communications , 2009, (22):
Wang P F, Lv A L, Hu J, Xu J A, Lu G Z. In situ synthesis of SAPO-34 grown onto fully calcined kaolin microspheres and its catalytic properties for the MTO reaction. Industrial & Engineering Chemistry Research , ):
Olsbye U, Svelle S, Bjorgen M, Beato P, Janssens T V W, Joensen F, Bordiga S, Lillerud K P. Conversion of methanol to hydrocarbons: How zeolite cavity and pore size controls product selectivity. Angewandte Chemie International Edition , ):
Lietz G, Schnabel K H, Peuker C, Gross T, Storek W, Volter J. Modifications of H-ZSM-5 catalysts by NaOH treatment. Journal of Catalysis , ): 562-568 doi:
Bjorgen M, Joensen F, Holm M S, Olsbye U, Lillerud K P, Svelle S. Methanol to gasoline over zeolite H-ZSM-5: Improved catalyst performance by treatment with NaOH. Applied Catalysis A, General , ): 43-50 doi:
Kim J, Choi M, Ryoo R. Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process. Journal of Catalysis , ): 219-228 doi:
Ni Y M, Sun A M, Wu X L, Hai G L, Hu J L, Li T, Li G X. Preparation of hierarchical mesoporous Zn/HZSM-5 catalyst and its application in MTG reaction. Journal of Natural Gas Chemistry , ): 237-242 doi:
Rownaghi A A, Hedlund J. Methanol to gasoline-range hydrocarbons: Influence of nanocrystal size and mesoporosity on catalytic performance and product distribution of ZSM-5. Industrial & Engineering Chemistry Research , ):
Vennestrom P N R, Grill M, Kustova M, Egeblad K, Lundegaard L F, Joensen F, Christensen C H, Beato P. Hierarchical ZSM-5 prepared by guanidinium base treatment: Understanding microstructural characteristics and impact on MTG and NH3-SCR catalytic reactions. Catalysis Today , ): 71-79 doi:
Rownaghi A A, Rezaei F, Hedlund J. Rezaei, Hedlund J. Uniform mesoporous ZSM-5 single crystals catalyst with high resistance to coke formation for methanol deoxygenation. Microporous and Mesoporous Materials , : 26-33 doi:
Kima K, Ryoo R, Jang H D, Choi M. Spatial distribution, strength, and dealumination behavior of acid sites in nanocrystalline MFI zeolites and their catalytic consequences. Journal of Catalysis , : 115-123 doi:
Related articles from Frontiers Journals
Jie Wang, Jianjia Liu, Xuhong Guo, Liang Yan, Stephen F. Lincoln. [J]. Front. Chem. Sci. Eng., ): 432-439.
Nadir Abbas, Godlisten N. Shao, Syed M. Imran, Muhammad S. Haider, Hee Taik Kim. [J]. Front. Chem. Sci. Eng., ): 405-416.
Timothy J. Wilson,Yijin Liu,David M. J. Lilley. [J]. Front. Chem. Sci. Eng., ): 178-185.
Zhiyi Wu,Zafar Iqbal,Xianqin Wang. [J]. Front. Chem. Sci. Eng., ): 280-294.
Xiaokai SONG,Zhongyi JIANG,Lin LI,Hong WU. [J]. Front. Chem. Sci. Eng., ): 353-361.
Mayur V. KHEDKAR, Bhalchandra M. BHANAGE. [J]. Front Chem Sci Eng, ): 226-232.
Hui LI, Yuanbin SHE, Tao WANG. [J]. Front Chem Sci Eng, ): 356-368.
John TELLAM, Xu ZONG, Lianzhou WANG. [J]. Front Chem Sci Eng, ): 53-57.
Dejun SHI, Ke QIAO, Zifeng YAN. [J]. Front Chem Sci Eng, ): 372-375.
Changwei HU, Yu YANG, Jia LUO, Pan PAN, Dongmei TONG, Guiying LI. [J]. Front Chem Sci Eng, ): 188-193.
Wei WANG, Jinlong GONG. [J]. Front Chem Sci Eng, ): 2-10.
Qiong XU, Zhigao YANG, Dulin YIN, Jihui WANG. [J]. Front Chem Eng Chin, ): 201-205.
Salah ALJBOUR, Tomohiko TAGAWA, Mohammad MATOUQ, Hiroshi YAMADA. [J]. Front Chem Eng Chin, ): 33-38.
LUO Peng, YANG Chuanmin, LIU Zhong, WANG Gaosheng. [J]. Front. Chem. Sci. Eng., ): 447-451.
ZHANG Dongxiang, XUE Min, XU Hang, XU Wenguo, TARASOV V. [J]. Front. Chem. Sci. Eng., ): 319-324.}

我要回帖

更多关于 ball valve 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信