ab与cd交于点e,cf为角bcd的ae平行bf ac平分角bad线,af为角bad的ae平行bf ac平分角bad线

当前位置:
>>>如图1,在?ABCD中,∠BCD的平分线交直线AD于点F,∠BAD的平分线交D..
如图1,在?ABCD中,∠BCD的平分线交直线AD于点F,∠BAD的平分线交DC延长线于E.(1)在图1中,证明AF=EC;(2)若∠BAD=90°,G为CF的中点(如图2),判断△BEG的形状,并证明.
题型:解答题难度:中档来源:不详
(1)证明:∵四边形ABCD是平行四边形,∴BC∥AD,∠BAD=∠BCD,∵∠BCD的平分线CF,∠BAD的平分线AM,∴∠4=12∠BAD,∠2=∠3=12∠BCD,∴∠2=∠3=∠4,∵BC∥AD,∴∠1=∠4,∴∠1=∠2,∴AM∥CF,即AE∥CF,AE≠CF,∴四边形AECF是梯形,∵AM∥CF,∴∠3=∠E=∠4,∴梯形AECF是等腰梯形,∴AF=CE;(2)△BEG是等腰直角三角形,证明:连接AG,过G作GN∥BC交AB于N,∵四边形ABCD是矩形,∴BC∥AD,∠CBN=90°,∴∠GNB=90°,BC∥GN∥AD,∵G为CF的中点,∴N为AB中点,即NG是AB的垂直平分线,∴BG=AG,∴∠BGN=∠AGN,∵NG∥AD,∴∠AGN=∠GAF=∠BGN,∵CF平分∠BCD,∠BCD=90°,∴∠DCF=90°,∠DCF=45°,∴∠DFC=45°,∴∠ECG=∠AFC=90°+45°=135°,在△AFG和△ECG中∵AF=CE∠AFG=∠ECGFG=CG,∴△AFG≌△ECG(SAS),∴AG=EG=BG,∠EGC=∠AGF,∠GAF=∠GEC,∵∠AGN=∠GAF=∠BGN,∴∠AGN=∠GAF=∠BGN=∠GEC,∵∠GAF+∠AGF=180°-135°=45°,∴∠EGC+∠BGF=2(∠GAF+∠AGF)=90°∴△BEG是等腰直角三角形.
马上分享给同学
据魔方格专家权威分析,试题“如图1,在?ABCD中,∠BCD的平分线交直线AD于点F,∠BAD的平分线交D..”主要考查你对&&平行四边形的性质&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
平行四边形的性质
平行四边形的概念:两组对边分别平行的四边形叫做平行四边形。平行四边形用符号“□ABCD,如平行四边形ABCD记作“□ABCD”,读作ABCD”。①平行四边形属于平面图形。②平行四边形属于四边形。③平行四边形中还包括特殊的平行四边形:矩形,正方形和菱形等。④平行四边形属于中心对称图形。平行四边形的性质:主要性质(矩形、菱形、正方形都是特殊的平行四边形。)(1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。(简述为“平行四边形的两组对边分别相等”)(2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。(简述为“平行四边形的两组对角分别相等”)(3)如果一个四边形是平行四边形,那么这个四边形的邻角互补(简述为“平行四边形的邻角互补”)(4)夹在两条平行线间的平行线段相等。(5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。(简述为“平行四边形的对角线互相平分”)(6)连接任意四边形各边的中点所得图形是平行四边形。(推论)(7)平行四边形的面积等于底和高的积。(可视为矩形)(8)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。(9)平行四边形是中心对称图形,对称中心是两对角线的交点.(10)平行四边形不是轴对称图形,矩形和菱形是轴对称图形。注:正方形,矩形以及菱形也是一种特殊的平行四边形,三者具有平行四边形的性质。(11)平行四边形ABCD中(如图)E为AB的中点,则AC和DE互相三等分,一般地,若E为AB上靠近A的n等分点,则AC和DE互相(n+1)等分。(12)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和。(13)平行四边形对角线把平行四边形面积分成四等分。(14)平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。(15)平行四边形中,一个角的顶点向他对角的两边所做的高,与这个角的两边组成的夹角相等。
发现相似题
与“如图1,在?ABCD中,∠BCD的平分线交直线AD于点F,∠BAD的平分线交D..”考查相似的试题有:
918667743328200864732783689625501835当前位置:
>>>如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△B..
如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)若AB=15,AD=7,BC=5,求CE的长.
题型:解答题难度:中档来源:不详
(1)证明:∵AC平分∠BAD,CE⊥AB于E,CF⊥AD于F∴CE=CF,在Rt△BCE和Rt△DCF中,∵CE=CF,BC=CD,∴Rt△BCE≌Rt△DCF (HL).(3分)(2)∵Rt△BCE≌Rt△DCF,∴DF=EB,CE=CF,CE⊥AB于E,CF⊥AD于F,∴Rt△ACE≌Rt△ACF,∴AF=AE,(2分)∵AB=15,AD=7,∴AD+DF=AB-EB,∴EB=DF=4,(2分)在Rt△BCE中,根据勾股定理,CE=3.(1分)
马上分享给同学
据魔方格专家权威分析,试题“如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△B..”主要考查你对&&勾股定理&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
勾股定理:直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,如果直角三角形的两直角边长分别为a,b,斜边长为c,那么。勾股定理只适用于直角三角形,应用于解决直角三角形中的线段求值问题。定理作用⑴勾股定理是联系数学中最基本也是最原始的两个对象——数与形的第一定理。⑵勾股定理导致不可通约量的发现,从而深刻揭示了数与量的区别,即所谓“无理数"与有理数的差别,这就是所谓第一次数学危机。⑶勾股定理开始把数学由计算与测量的技术转变为证明与推理的科学。⑷勾股定理中的公式是第一个不定方程,也是最早得出完整解答的不定方程,它一方面引导到各式各样的不定方程,包括著名的费尔马大定理,另一方面也为不定方程的解题程序树立了一个范式。勾股定理的应用:数学从勾股定理出发开平方、开立方、求圆周率等,运用勾股定理数学家还发现了无理数。勾股定理在几何学中的实际应用非常广泛,较早的应用案例有《九章算术》中的一题:“今有池,芳一丈,薛生其中央,出水一尺,引薛赴岸,适与岸齐,问水深几何?答曰:"一十二尺"。生活勾股定理在生活中的应用也较广泛,举例说明如下:1、挑选投影设备时需要选择最佳的投影屏幕尺寸。以教室为例,最佳的屏幕尺寸主要取决于使用空间的面积,从而计划好学生座位的多少和位置的安排。选购的关键则是选择适合学生的屏幕而不是选择适合投影机的屏幕,也就是说要把学生的视觉感受放在第一位。一般来说在选购时可参照三点:第一,屏幕高度大约等于从屏幕到学生最后一排座位的距离的1/6;第二,屏幕到第一排座位的距离应大于2倍屏幕的高度;第三,屏幕底部应离观众席所在地面最少122厘米。屏幕的尺寸是以其对角线的大小来定义的。一般视频图像的宽高比为4:3,教育幕为正方形。如一个72英寸的屏幕,根据勾股定理,很快就能得出屏幕的宽为1.5m,高为1.1m。2、2005年珠峰高度复测行动。测量珠峰的一种方法是传统的经典测量方法,就是把高程引到珠峰脚下,当精确高程传递至珠峰脚下的6个峰顶交会测量点时,通过在峰顶竖立的测量觇标,运用“勾股定理”的基本原理测定珠峰高程,配合水准测量、三角测量、导线测量等方式,获得的数据进行重力、大气等多方面改正计算,最终得到珠峰高程的有效数据。通俗来说,就是分三步走:第一步,先在珠峰脚下选定较容易的、能够架设水准仪器的测量点,先把这些点的精确高程确定下来;第二步,在珠峰峰顶架起觇标,运用三角几何学中“勾股定理”的基本原理,推算出珠峰峰顶相对于这几个点的高程差;第三步,获得的高程数据要进行重力、大气等多方面的改正计算,最终确定珠峰高程测量的有效数据。
发现相似题
与“如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△B..”考查相似的试题有:
355300124114106399902684115587193725当前位置:
>>>如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H..
如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有(  )A.2个B.3个C.4个D.5个
题型:单选题难度:中档来源:不详
C试题分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH,∵∠DOH=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠DOH=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C.
马上分享给同学
据魔方格专家权威分析,试题“如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H..”主要考查你对&&相似多边形的性质,相似三角形的判定,相似三角形的性质,相似三角形的应用&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
相似多边形的性质相似三角形的判定相似三角形的性质相似三角形的应用
相似多边形:如果两个边数相同的多边形的对应角相等,对应边成比例,这两个或多个多边形叫做相似多边形,相似多边形对应边的比叫做相似比。(或相似系数)判定:如果对应角相等,对应边成比例的多边形是相似多边形.如果所有对应边成比例,那么这两个多边形相似相似多边形的性质:相似多边形的性质定理1:相似多边形周长比等于相似比。相似多边形的性质定理2:相似多边形对应对角线的比等于相似比。相似多边形的性质定理3:相似多边形中的对应三角形相似,其相似比等于相似多边形的相似比。相似多边形的性质定理4:相似多边形面积的比等于相似比的平方。相似多边形的性质定理5:若相似比为1,则全等。相似多边形的性质定理6:相似三角形的对应线段(边、高、中线、角平分线)成比例。相似多边形的性质定理7:相似三角形的对应角相等,对应边成比例。相似多边形的性质定理主要根据它的定义:对应角相等,对应边成比例。相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。互为相似形的三角形叫做相似三角形。例如图中,若B'C'//BC,那么角B=角B',角BAC=角B'A'C',是对顶角,那么我们就说△ABC∽△AB'C'相似三角形的判定:1.基本判定定理(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。(简叙为:两边对应成比例且夹角相等,两个三角形相似。)(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。(简叙为:三边对应成比例,两个三角形相似。)(4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),那么这两个三角形相似。2.直角三角形判定定理(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。3.一定相似:(1).两个全等的三角形(全等三角形是特殊的相似三角形,相似比为1:1)(2).两个等腰三角形(两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。) (3).两个等边三角形(两个等边三角形,三个内角都是60度,且边边相等,所以相似) (4).直角三角形中由斜边的高形成的三个三角形。相似三角形判定方法:证两个相似三角形应该把表示对应顶点的字母写在对应的位置上。如果是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点可能没有写在对应的位置上,而如果是符号语言的“△ABC∽△DEF”,那么就说明这两个三角形的对应顶点写在了对应的位置上。一、(预备定理)平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。(这是相似三角形判定的定理,是以下判定方法证明的基础。这个引理的证明方法需要平行线与线段成比例的证明)二、如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。三、如果两个三角形的两组对应边成比例,并且相应的夹角相等,那么这两个三角形相似。& 四、如果两个三角形的三组对应边成比例,那么这两个三角形相似五(定义)对应角相等,对应边成比例的两个三角形叫做相似三角形六、两三角形三边对应垂直,则两三角形相似。七、两个直角三角形中,斜边与直角边对应成比例,那么两三角形相似。八、由角度比转化为线段比:h1/h2=Sabc易失误比值是一个具体的数字如:AB/EF=2而比不是一个具体的数字如:AB/EF=2:1相似三角形性质定理:(1)相似三角形的对应角相等。(2)相似三角形的对应边成比例。(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。(4)相似三角形的周长比等于相似比。(5)相似三角形的面积比等于相似比的平方。(6)相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方(7)若a/b =b/c,即b2=ac,b叫做a,c的比例中项(8)c/d=a/b 等同于ad=bc.(9)不必是在同一平面内的三角形里①相似三角形对应角相等,对应边成比例.②相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.③相似三角形周长的比等于相似比
定理推论:推论一:顶角或底角相等的两个等腰三角形相似。推论二:腰和底对应成比例的两个等腰三角形相似。推论三:有一个锐角相等的两个直角三角形相似。推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。相似三角形的应用:应用相似三角形的判定、性质等知识去解决某些简单的实际问题(计算不能直接测量物体的长度和高度)。
发现相似题
与“如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H..”考查相似的试题有:
690817698062685793670042704416700857如图,在?ABCD中,AE是∠BAD的角平分线,交CD于点E,与BC的延长线交于点M,CF是∠BCD的角平分线,交AB于点F,交DA的延长线于点N.(1)试判断四边形AFCE的形状,并说明理由;(2)求证:AN=CM.
(1)平行四边形,理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠MAD=∠AMC,∵AE是∠BAD的角平分线,CF是∠BCD的角平分线,∴∠MAD=∠DAB,∠BCF=∠BCD,∴∠MAD=∠BCF,∴∠BCF=∠AMC,∴AE∥CF,∵AF∥CE,∴四边形AFCE的形状是平行四边形;(2)证明:由(1)知AF=CE,∵AB∥CD,∴∠DEA=∠EAD=∠DAB,∵∠MEC=∠DEA,∴∠MEC=∠DAB,∵∠AMC=∠MAD=∠DAB,∴∠MEC=∠AMC,∴CM=CE,同理可得AN=AF,∴AN=CM.
为您推荐:
(1)四边形AFCE的形状是平行四边形,利用已知条件证明AE∥CF即可;(2)由(1)知AF=CE,再证明CM=CE,同理可得AN=AF,进而证明AN=CM.
本题考点:
平行四边形的判定与性质.
考点点评:
本题考查了平行四边形的性质和判定、角平分线的性质以及等腰三角形的判定和性质,题目的综合性较强,难度中等.
扫描下载二维码如图,平行四边形ABCD中,AF平分角BAD,交DC的延长线于F,CE平分角BCD交BA延长线于E求证AE=CF
韻酭儩酼00629
证明:∵:平行四边ABCD∴:AE∥CF     角BAD=角BCD  又∵:AF和CE为平分线   ∴:角ECD=角BAF     角ECD=角AEC   ∴:角BAF=角AEC   ∴:EC∥AF 所以:四边形AECF为平行四边形 所以:AE=CF     方法很多.其中之一.
为您推荐:
其他类似问题
证明:∵四边形ABCD是平行四边形 ∴ 角B=角D ,角BAD=角DCB,AB=CD,BC=AD∵AF,CE是角BAD,角DCB的角平分线∴角FAD=角ECB∴△BEC≌△DFA(ASA)∴BE=DF∵AB=CD∴AE=CF
∵平行四边形ABCD
∴:AB//DC又∵E,F分别在BA,DC上,∴:AE//FC∵AF平分角BAD
CE平分角BCD∴:角BAF=角ECB∴:AF//EC∴:AEFC为平行四边形∴:AE=CF
扫描下载二维码}

我要回帖

更多关于 如图 ac平分角bad 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信