北京发那科科系统车床车外圆内孔时有时会报警410X轴误差过大

原装发那科系列A20B-
最近被加入的企业
名片夹还没有企业信息,赶紧查看企业联系方式加入吧!
品牌:Fanuc/发那科型号:A20B-功能:模拟伺服驱动元件类型:机电控制方式:闭环功率:1500kw额定电压:220V产品认证:l1900速度响应频率:2000KHz加工定制:否11.01:12040.5454.4.4:453245.24.24:242442.42:2424424.5:2424.1
发那科伺服变频器总销售上海仁熙实业公司专业从事安川等国际知名品牌多年 有着丰富经验良好渠道
在国内外 一致受到顾客好评 欢迎来电咨询
上海仁熙实业有限公司
黎明 商务经理欢迎来电咨询
电话:021-
传真:021-
QQ: A20B-A20B-A20B-A20B-A20B-A20B-A20B-A20B-A20B-A20B-A20B-A20B-A20B-A20B-A20B-A20B-A20B-A20B-A20B-A20B-A20B-A20B-A20B-A20B-A20B-A20B-A20B-A20B-A20B-A20B-A20B-A20B-A20B-A20B-A20B-A20B-A20B-A20B-A20B-A20B-A20B-A20B-A20B-A20B-1. 刚性攻丝主轴控制回路为位置闭环控制,主轴电机的旋转与攻丝轴(Z轴)进给完全同步,从而实现高速高精度攻丝。2. 复合加工循环复合加工循环可用简单指令生成一系列的切削路径。比如定义了工件的最终轮廓,可以自动生成多次粗车的刀具路径,简化了车床编程。3. 圆柱插补适用于切削圆柱上的槽,能够按照圆柱表面的展开图进行编程。4. 直接尺寸编程可直接指定诸如直线的倾角、倒角值、转角半径值等尺寸,这些尺寸在零件图上指定,这样能简化部件加工程序的编程。5. 记忆型螺距误差补偿 可对丝杠螺距误差等机械系统中的误差进行补偿,补偿数据以参数的形式存储在CNC的存储器中。6. CNC内装PMC编程功能PMC对机床和外部设备进行程序控制7. 随机存储模块MTB(机床厂)可在CNC上直接改变PMC程序和宏执行器程序。由于使用的是闪存芯片,故无需专用的RAM写入器或PMC的调试RAM。中文名FANUC系统特
点 刚性攻丝系统组成图6 系统硬件数控车床确定加工方案的原则目录1特点2系统组成3数控车床4加工中心5宏程序6维修维护7维修技巧8日本公司9北京公司1特点编辑1. 刚性攻丝主轴控制回路为位置闭环控制,主轴电机的旋转与攻丝轴(Z轴)进给完全同步,从而实现高速高精度攻丝。2. 复合加工循环复合加工循环可用简单指令生成一系列的切削路径。比如定义了工件的最终轮廓,可以自动生成多次粗车的刀具路径,简化了车床编程。3. 圆柱插补适用于切削圆柱上的槽,能够按照圆柱表面的展开图进行编程。4. 直接尺寸编程可直接指定诸如直线的倾角、倒角值、转角半径值等尺寸,这些尺寸在零件图上指定,这样能简化部件加工程序的编程。5. 记忆型螺距误差补偿 可对丝杠螺距误差等机械系统中的误差进行补偿,补偿数据以参数的形式存储在CNC的存储器中。6. CNC内装PMC编程功能PMC对机床和外部设备进行程序控制7. 随机存储模块MTB(机床厂)可在CNC上直接改变PMC程序和宏执行器程序。由于使用的是闪存芯片,故无需专用的RAM写入器或PMC的调试RAM。8. 显示装置2系统组成编辑1. 系统构成图6 系统硬件概要图6从总体上描述了系统板上应该连接的硬件和应具有的功能。图7 FANUC 0i系列控制单元构成及连接图7所表示的是FANUC0i控制单元及其所要连接的部件示意图,每一个文字方框中表示的部件,都按照图中所列的位置(插座、插槽)与系统相连接。具体的连接方式、方法请参照FANUC连接说明书(硬件)的各章节。2. 系统连线系统综合连接图系统的综合连接详图中标示了系统板上的插槽名以及每一个插槽所连接的部件。3. 系统构成主轴电动机的控制有两种接口;模拟和数字(串行传送)输出。模拟接口需用其他公司的变频器及电动机。(1) 模拟主轴接口(2) 串行主轴接口4. 数字伺服伺服的连接分A型和B型,由伺服放大器上的一个短接棒控制。A型连接是将位置反馈线接到cNc系统,B型连接是将其接到伺服放大器。0i和近期开发的系统用B型。o系统大多数用A型。两种接法不能任意使用,与伺服软件有关。连接时最后的放大器JxlB需插上FANUC (提供的短接插头,如果遗忘会出现#401报警.另外,荐选用一个伺服放大器控制两个电动机,应将大电动机电抠接在M端子上,小电动机接在L端子上.否则电动机运行时会听到不正常的嗡声。3数控车床编辑数控车床图标数控车床图标数控车床编程如何确定加工方案(一)确定加工方案的原则加工方案又称工艺方案,数控机床的加工方案包括制定工序、工步及走刀路线等内容。在数控机床加工过程中,由于加工对象复杂多样,特别是轮廓曲线的形状及位置千变万化,加上材料不同、批量不同等多方面因素的影响,在对具体零件制定加工方案时,应该进行具体分析和区别对待,灵活处理。只有这样,才能使所制定的加工方案合理,从而达到质量优、效率高和成本低的目的。制定加工方案的一般原则为:先粗后精,先近后远,先内后外,程序段最少,走刀路线最短以及特殊情况特殊处理。(1)先粗后精为了提高生产效率并保证零件的精加工质量,在切削加工时,应先安排粗加工工序,在较短的时间内,将精加工前大量的加工余量(如图3-4中的虚线内所示部分)去掉,同时尽量满足精加工的余量均匀性要求。当粗加工工序安排完后,应接着安排换刀后进行的半精加工和精加工。其中,安排半精加工的目的是,当粗加工后所留余量的均匀性满足不了精加工要求时,则可安排半精加工作为过渡性工序,以便使精加工余量小而均匀。在安排可以一刀或多刀进行的精加工工序时,其零件的最终轮廓应由最后一刀连续加工而成。这时,加工刀具的进退刀位置要考虑妥当,尽量不要在连续的轮廓中安排切人和切出或换刀及停顿,以免因切削力突然变化而造成弹性变形,致使光滑连接轮廓上产生表面划伤、形状突变或滞留刀痕等疵病。(2)先近后远这里所说的远与近,是按加工部位相对于对刀点的距离大小而言的。在一般情况下,特别是在粗加工时,通常安排离对刀点近的部位先加工,离对刀点远的部位后加工,以便缩短刀具移动距离,减少空行程时间。对于车削加工,先近后远有利于保持毛坯件或半成品件的刚性,改善其切削条件。(3)先内后外对既要加工内表面(内型、腔),又要加工外表面的零件,在制定其加工方案时,通常应安排先加工内型和内腔,后加工外表面。这是因为控制内表面的尺寸和形状较困难,刀具刚性相应较差,刀尖(刃)的耐用度易受切削热影响而降低,以及在加工中清除切屑较困难等。(4)走刀路线最短确定走刀路线的工作重点,主要用于确定粗加工及空行程的走刀路线,因精加工切削过程的走刀路线基本上都是沿其零件轮廓顺序进行的。走刀路线泛指刀具从对刀点(或机床固定原点)开始运动起,直至返回该点并结束加工程序所经过的路径,包括切削加工的路径及刀具引入、切出等非切削空行程。在保证加工质量的前提下,使加工程序具有最短的走刀路线,不仅可以节省整个加工过程的执行时间,还能减少一些不必要的刀具消耗及机床进给机构滑动部件的磨损等。优化工艺方案除了依靠大量的实践经验外,还应善于分析,必要时可辅以一些简单计算。上述原则并不是一成不变的,对于某些特殊情况,则需要采取灵活可变的方案。如有的工件就必须先精加工后粗加工,才能保证其加工精度与质量。这些都有赖于编程者实际加工经验的不断积累与学习。(二)加工路线与加工余量的关系在数控车床还未达到普及使用的条件下,一般应把毛坯件上过多的余量,特别是含有锻、铸硬皮层的余量安排在普通车床上加工。如必须用数控车床加工时,则要注意程序的灵活安排。安排一些子程序对余量过多的部位先作一定的切削加工。(1)对大余量毛坯进行阶梯切削时的加工路线(2)分层切削时刀具的终止位置(三)车螺纹时的主轴转速数控车床加工螺纹时,因其传动链的改变,原则上其转速只要能保证主轴每转一周时,刀具沿主进给轴(多为Z轴)方向位移一个螺距即可,不应受到限制。但数控车床加工螺纹时,会受到以下几方面的影响:(1)螺纹加工程序段中指令的螺距(导程)值,相当于以进给量(mm/r)表示的进给速度F,如果将机床的主轴转速选择过高,其换算后的进给速度(mm/min)则必定大大超过正常值;(2)刀具在其位移的始/终,都将受到伺服驱动系统升/降频率和数控装置插补运算速度的约束,由于升/降频特性满足不了加工需要等原因,则可能因主进给运动产生出的“超前”和“滞后”而导致部分螺牙的螺距不符合要求;(3)车削螺纹必须通过主轴的同步运行功能而实现,即车削螺纹需要有主轴脉冲发生器(编码器)。当其主轴转速选择过高,通过编码器发出的定位脉冲(即主轴每转一周时所发出的一个基准脉冲信号)将可能因“过冲”(特别是当编码器的质量不稳定时)而导致工件螺纹产生乱扣。因此,车螺纹时,主轴转速的确定应遵循以下几个原则:(1)在保证生产效率和正常切削的情况下,宜选择较低的主轴转速;(2)当螺纹加工程序段中的导入长度δ1和切出长度δ2(如图所示)考虑比较充裕,即螺纹进给距离超过图样上规定螺纹的长度较大时,可选择适当高一些的主轴转速;(3)当编码器所规定的允许工作转速超过机床所规定主轴的最大转速时,则可选择尽量高一些的主轴转速;(4)通常情况下,车螺纹时的主轴转速(n螺)应按其机床或数控系统说明书中规定的计算式进行确定,其计算式多为:n螺≤n允/L(r/min) 式中n允—编码器允许的最高工作转速(r/min);L—工件螺纹的螺距(或导程,mm)。FANUC 0-TD系统G 代码命令代码组及其含义“模态代码” 和 “一般” 代码“形式代码” 的功能在它被执行后会继续维持,而 “一般代码” 仅仅在收到该命令时起作用。定义移动的代码通常是“模态代码”,像直线、圆弧和循环代码。反之,像原点返回代码就叫“一般代码”。每一个代码都归属其各自的代码组。在“模态代码”里,当前的代码会被加载的同组代码替换。G代码 组别 解释G00 定位 (快速移动)G01 直线切削G02 顺时针切圆弧 (CW,顺时钟)G03 逆时针切圆弧 (CCW,逆时钟)G04 暂停 (Dwell)G09 停于精确的位置G20 英制输入G21 公制输入G22 内部行程限位 有效G23 内部行程限位 无效G27 检查参考点返回G28 参考点返回G29 从参考点返回G30 回到第二参考点G32 切螺纹G40 取消刀尖半径偏置G41 刀尖半径偏置 (左侧)G42 刀尖半径偏置 (右侧)G50 修改工件坐标;设置主轴最大的 RPMG52 设置局部坐标系G53 选择机床坐标系G70 精加工循环G71 内外径粗切循环G72 台阶粗切循环G73 成形重复循环G74 Z 向步进钻削G75 X 向切槽G76 切螺纹循环G80 取消固定循环G83 钻孔循环G84 攻丝循环G85 正面镗孔循环G87 侧面钻孔循环G88 侧面攻丝循环G89 侧面镗孔循环G90 (内外直径)切削循环G92 切螺纹循环G94 (台阶) 切削循环G96 12 恒线速度控制G97 恒线速度控制取消G98 每分钟进给率G99 每转进给率代码解释G00 定位1. 格式 G00 X_ Z_ 这个命令把刀具从当前位置移动到命令指定的位置 (在绝对坐标方式下), 或者移动到某个距离处 (在增量坐标方式下)。 2. 非直线切削形式的定位 我们的定义是:采用独立的快速移动速率来决定每一个轴的位置。刀具路径不是直线,根据到达的顺序,机器轴依次停止在命令指定的位置。 3. 直线定位 刀具路径类似直线切削(G01) 那样,以最短的时间(不超过每一个轴快速移动速率)定位于要求的位置。 4. 举例 N10 G0 X100 Z65G01 直线插补1. 格式 G01 X(U)_ Z(W)_ F_ ;直线插补以直线方式和命令给定的移动速率从当前位置移动到命令位置。X, Z: 要求移动到的位置的绝对坐标值。U,W: 要求移动到的位置的增量坐标值。2. 举例① 绝对坐标程序 G01 X50. Z75. F0.2 ;X100.; ② 增量坐标程序G01 U0.0 W-75. F0.2 ;U50.圆弧插补 (G02, G03)1. 格式 G02(G03) X(U)__Z(W)__I__K__F__ ;G02(G03) X(U)__Z(W)__R__F__ ;G02 – 顺时钟 (CW)G03 – 逆时钟 (CCW)X, Z –在坐标系里的终点U, W – 起点与终点之间的距离I, K – 从起点到中心点的矢量 (半径值)R – 圆弧范围 (最大180 度)。2. 举例① 绝对坐标系程序G02 X100. Z90. I50. K0. F0.2或G02 X100. Z90. R50. F02;② 增量坐标系程序G02 U20. W-30. I50. K0. F0.2;或G02 U20. W-30. R50. F0.2;第二原点返回 (G30)坐标系能够用第二原点功能来设置。 1. 用参数 (a, b) 设置刀具起点的坐标值。点 “a” 和 “b” 是机床原点与起刀点之间的距离。 2. 在编程时用 G30 命令代替 G50 设置坐标系。 3. 在执行了第一原点返回之后,不论刀具实际位置在那里,碰到这个命令时刀具便移到第二原点。 4. 更换刀具也是在第二原点进行的。切螺纹 (G32)1. 格式 G32 X(U)__Z(W)__F__ ; G32 X(U)__Z(W)__E__ ; F –螺纹导程设置 E –螺距 (毫米) 在编制切螺纹程序时应当带主轴转速RPM 均匀控制的功能 (G97),并且要考虑螺纹部分的某些特性。在螺纹切削方式下移动速率控制和主轴速率控制功能将被忽略。而且在送进保持按钮起作用时,其移动进程在完成一个切削循环后就停止了。 2. 举例 G00 X29.4; (1循环切削) G32 Z-23. F0.2; G00 X32; Z4.; X29.;(2循环切削) G32 Z-23. F0.2; G00 X32.; Z4. 刀具直径偏置功能 (G40/G41/G42)1. 格式 G41 X_ Z_;G42 X_ Z_;在刀具刃是尖利时,切削进程按照程序指定的形状执行不会发生问题。不过,真实的刀具刃是由圆弧构成的 (刀尖半径) 就像上图所示,在圆弧插补和攻螺纹的情况下刀尖半径会带来误差。2. 偏置功能命令 切削位置 刀具路径G40 取消 刀具按程序路径的移动G41 右侧 刀具从程序路径左侧移动G42 左侧 刀具从程序路径右侧移动补偿的原则取决于刀尖圆弧中心的动向,它总是与切削表面法向里的半径矢量不重合。因此,补偿的基准点是刀尖中心。通常,刀具长度和刀尖半径的补偿是按一个假想的刀刃为基准,因此为测量带来一些困难。把这个原则用于刀具补偿,应当分别以 X 和 Z 的基准点来测量刀具长度刀尖半径 R,以及用于假想刀尖半径补偿所需的刀尖形式数 (0-9)。这些内容应当事前输入刀具偏置文件。“刀尖半径偏置” 应当用 G00 或者 G01功能来下达命令或取消。不论这个命令是不是带圆弧插补, 刀不会正确移动,导致它逐渐偏离所执行的路径。因此,刀尖半径偏置的命令应当在切削进程启动之前完成; 并且能够防止从工件外部起刀带来的过切现象。反之,要在切削进程之后用移动命令来执行偏置的取消过工件坐标系选择(G54-G59)1. 格式 G54 X_ Z_; 2. 功能 通过使用 G54 – G59 命令,来将机床坐标系的一个任意点 (工件原点偏移值) 赋予 1221 – 1226 的参数,并设置工件坐标系(1-6)。该参数与 G 代码要相对应如下: 工件坐标系 1 (G54) ---工件原点返回偏移值---参数 1221 工件坐标系 2 (G55) ---工件原点返回偏移值---参数 1222 工件坐标系 3 (G56) ---工件原点返回偏移值---参数 1223 工件坐标系 4 (G57) ---工件原点返回偏移值---参数 1224 工件坐标系 5 (G58) ---工件原点返回偏移值---参数 1225 工件坐标系 6 (G59) ---工件原点返回偏移值---参数 1226 在接通电源和完成了原点返回后,系统自动选择工件坐标系 1 (G54) 。在有 “模态”命令对这些坐标做出改变之前,它们将保持其有效性。 除了这些设置步骤外,系统中还有一参数可立刻变更G54~G59 的参数。工件外部的原点偏置值能够用 1220 号参数来传递。精加工循环(G70)1. 格式 G70 P(ns) Q(nf) ns:精加工形状程序的第一个段号。 nf:精加工形状程序的最后一个段号 2. 功能 用G71、G72或G73粗车削后,G70精车削。外园粗车固定循环(G71)1. 格式 G71U(△d)R(e)G71P(ns)Q(nf)U(△u)W(△w)F(f)S(s)T(t)N(ns)…………….F__从序号ns至nf的程序段,指定A及B间的移动指令。.S__.T__N(nf)……△d:切削深度(半径指定)不指定正负符号。切削方向依照AA’的方向决定,在另一个值指定前不会改变。FANUC系统参数(NO.0717)指定。e:退刀行程本指定是状态指定,在另一个值指定前不会改变。FANUC系统参数(NO.0718)指定。ns:精加工形状程序的第一个段号。nf:精加工形状程序的最后一个段号。△u:X方向精加工预留量的距离及方向。(直径/半径)△w: Z方向精加工预留量的距离及方向。2. 功能如果在下图用程序决定A至A’至B的精加工形状,用△d(切削深度)车掉指定的区域,留精加工预留量△u/2及△w。端面车削固定循环(G72)1. 格式 G72W(△d)R(e) G72P(ns)Q(nf)U(△u)W(△w)F(f)S(s)T(t) △t,e,ns,nf, △u, △w,f,s及t的含义与G71相同。 2. 功能 如下图所示,除了是平行于X轴外,本循环与G71相同。成型加工复式循环(G73)1. 格式 G73U(△i)W(△k)R(d)G73P(ns)Q(nf)U(△u)W(△w)F(f)S(s)T(t)N(ns)…………………沿A A’ B的程序段号N(nf)………△i:X轴方向退刀距离(半径指定), FANUC系统参数(NO.0719)指定。△k: Z轴方向退刀距离(半径指定), FANUC系统参数(NO.0720)指定。d:分割次数这个值与粗加工重复次数相同,FANUC系统参数(NO.0719)指定。ns: 精加工形状程序的第一个段号。nf:精加工形状程序的最后一个段号。△u:X方向精加工预留量的距离及方向。(直径/半径)△w: Z方向精加工预留量的距离及方向。2. 功能本功能用于重复切削一个逐渐变换的固定形式,用本循环,可有效的切削一个用粗加工段造或铸造等方式已经加工成型的工件。端面啄式钻孔循环(G74)1. 格式 G74 R(e); G74 X(u) Z(w) P(△i) Q(△k) R(△d) F(f) e:后退量 本指定是状态指定,在另一个值指定前不会改变。FANUC系统参数(NO.0722)指定。 x:B点的X坐标 u:从a至b增量 z:c点的Z坐标 w:从A至C增量 △i:X方向的移动量 △k:Z方向的移动量 △d:在切削底部的刀具退刀量。△d的符号一定是(+)。但是,如果X(U)及△I省略,可用所要的正负符号指定刀具退刀量。 f:进给率: 2. 功能 如下图所示在本循环可处理断削,如果省略X(U)及P,结果只在Z轴操作,用于钻孔。外经/内径啄式钻孔循环(G75)1. 格式 G75 R(e); G75 X(u) Z(w) P(△i) Q(△k) R(△d) F(f) 2. 功能 以下指令操作如下图所示,除X用Z代替外与G74相同,在本循环可处理断削,可在X轴割槽及X轴啄式钻孔。螺纹切削循环(G76)1. 格式 G76 P(m)(r)(a) Q(△dmin) R(d)G76 X(u) Z(w) R(i) P(k) Q(△d) F(f)m:精加工重复次数(1至99)本指定是状态指定,在另一个值指定前不会改变。FANUC系统参数(NO.0723)指定。r:到角量本指定是状态指定,在另一个值指定前不会改变。FANUC系统参数(NO.0109)指定。a:刀尖角度:可选择80度、60度、55度、30度、29度、0度,用2位数指定。本指定是状态指定,在另一个值指定前不会改变。FANUC系统参数(NO.0724)指定。如:P(02/m、12/r、60/a)△dmin:最小切削深度本指定是状态指定,在另一个值指定前不会改变。FANUC系统参数(NO.0726)指定。i:螺纹部分的半径差如果i=0,可作一般直线螺纹切削。k:螺纹高度这个值在X轴方向用半径值指定。△d:第一次的切削深度(半径值)l:螺纹导程(与G32)2. 功能螺纹切削循环。内外直径的切削循环(G90)1. 格式 直线切削循环:G90 X(U)___Z(W)___F___ ;按开关进入单一程序块方式,操作完成如图所示 1→2→3→4 路径的循环操作。U 和 W 的正负号 (+/-) 在增量坐标程序里是根据1和2的方向改变的。锥体切削循环:G90 X(U)___Z(W)___R___ F___ ;必须指定锥体的 “R” 值。切削功能的用法与直线切削循环类似。2. 功能外园切削循环。1. U&0, W&0, R0, W03. U0, W&0, R&0切削螺纹循环 (G92)1. 格式 直螺纹切削循环: G92 X(U)___Z(W)___F___ ; 螺纹范围和主轴 RPM 稳定控制 (G97) 类似于 G32 (切螺纹)。在这个螺纹切削循环里,切螺纹的退刀有可能如 [图 9-9] 操作;倒角长度根据所指派的参数在0.1L~ 12.7L的范围里设置为 0.1L 个单位。 锥螺纹切削循环: G92 X(U)___Z(W)___R___F___ ; 2. 功能 切削螺纹循环台阶切削循环 (G94)1. 格式 平台阶切削循环: G94 X(U)___Z(W)___F___ ; 锥台阶切削循环: G94 X(U)___Z(W)___R___ F___ ; 2. 功能 台阶切削 线速度控制 (G96, G97)NC车床用调整步幅和修改 RPM 的方法让速率划分成,如低速和高速区;在每一个区内的速率可以自由改变。 G96 的功能是执行线速度控制,并且只通过改变RPM 来控制相应的工件直径变化时维持稳定的切削速率。 G97 的功能是取消线速度控制,并且仅仅控制 RPM 的稳定。设置位移量 (G98/G99)切削位移能够用 G98 代码来指派每分钟的位移(毫米/分),或者用 G99 代码来指派每转位移(毫米/转);这里 G99 的每转位移在 NC 车床里是用于编程的。 每分钟的移动速率 (毫米/分) = 每转位移速率 (毫米/转) x 主轴 RPM轴类零件综合车削加工——数控车床编程实例40编制图所示零件的加工程序。工艺条件:工件材质为45#钢,或铝;毛坯为直径Φ54mm,长200mm的棒料;刀具选用:1号端面刀加工工件端面,2号端面外圆刀粗加工工件轮廓,3号端面外圆刀精加工工件轮廓,4号外圆螺纹刀加工导程为3mm,螺距为1mm 的三头螺纹。N10 G90 G54 T0101 (设立工件坐标系,,确定其坐标系,换一号端面刀,取1号刀补)N20 M03 S500 (主轴以500r/min正转)N30 G00 X100 Z80 (到程序起点或换刀点位置)N40 G00 X60 Z5 (到简单端面循环起点位置)N50 G81 X0 Z1.5 F100 (简单端面循环,加工过长毛坯)N60 G81 X0 Z0 (简单端面循环加工,加工过长毛坯)N70 G00 X100 Z80 (到程序起点或换刀点位置)N80 T0202 (换二号外圆粗加工刀,取2号刀补)N90 G00 X60 Z3 (到简单外圆循环起点位置)N100 G80 X52.6 Z-133 F100 (简单外圆循环,加工过大毛坯直径)N110 G01 X54 (到复合循环起点位置)N120 G71 U1 R1 P16 Q32 E0.3(有凹槽外径粗切复合循环加工)N130 G00 X100 Z80 (粗加工后,到换刀点位置)N140 T0303 (换三号外圆精加工刀, 取3号刀补)N150 G00 G42 X70 Z3 (到精加工始点,加入刀尖园弧半径补偿)N160 G01 X10 F100 (精加工轮廓开始,到倒角延长线处)N170 X19.95 Z-2 (精加工倒2×45°角)N180 Z-33 (精加工螺纹外径)N190 G01 X30 (精加工Z33处端面)N200 Z-43 (精加工Φ30外圆)N210 G03 X42 Z-49 R6 (精加工R6圆弧)N220 G01 Z-53 (精加工Φ42外圆)N230 X36 Z-65 (精加工下切锥面)N240 Z-73 (精加工Φ36槽径)N250 G02 X40 Z-75 R2 (精加工R2过渡圆弧)N260 G01 X44 (精加工Z75处端面)N270 X46 Z-76 (精加工倒1×45°角)N280 Z-84 (精加工Φ46槽径)N290 G02 Z-113 R25 (精加工R25圆弧凹槽)N300 G03 X52 Z-122 R15 (精加工R15圆弧)N310 G01 Z-133 (精加工Φ52外圆)N320 G01 X54 (退出已加工表面,精加工轮廓结束)N330 G00 G40 X100 Z80 (取消半径补偿,返回换刀点位置)N340 M05 (主轴停)N350 T0404 (换四号螺纹刀,取4号刀刀补)N360 M03 S200 (主轴以200r/min正转)N370 G00 X30 Z5 (到简单螺纹循环起点位置)N380 G00 X19.3N390 G32Z-20E1C2P120F3(加工两头螺纹,吃刀深0.7)N400 G00 X30N410 Z5N420 X18.9N430 G32Z-20E1C2P120F3(加工两头螺纹,吃刀深0.4)N440 G00 X30N450 Z5N460 X18.7N470 G32Z-20E1C2P120F3(加工两头螺纹,吃刀深0.2)N480 G00 X30N490 Z5N500 X18.7N510 G32Z-20E1C2P120F3(光整加工螺纹)N520 G00 X30N530 Z5N540 G76C2R-3E1A60X18.7Z-20 K0.65U0.1V0.1Q0.6P240F3 (螺纹切削精加工)N550 G00 X100 Z80 (返回程序起点位置)N560 M05 (主轴停转)N570 M30 (主程序结束并复位)1.子程序的定义在编制加工程序中,有时会遇到一组程序段在一个程序中多次出现,或者在几个程序中都要使用它。这个典型的加工程序可以做成固定程序,并单独加以命名,这组程序段就称为子程序。2.使用于程序的目的和作用使用于程序可以减少不必要的编程重复,从而达到减化编程的目的。其作用相当于一个固定循环。3. 子程序的调用在主程序中,调用于程序的指令是一个程序段,其格式随具体的数控系统而定,FANUC—6T系统子程序调用格式为M98 P———L———式中 M98--子程序调用字;p--子程序号;L--子程序重复调用次数。由此可见,子程序由程序调用字、子程序号和调用次数组成。4.子程序的返回子程序返回主程序用指令M99,它表示子程序运行结束,请返回到主程序。5.子程序的嵌套子程序调用下一级子程序称为嵌套。上一级子程序与下一级子程序的关系,与主程序与第一层子程序的关系相同。子程序可以嵌套多少层由具体的数控系统决定,在FANUC—6T系统中,只能有两次嵌套。
以上是原装发那科系列A20B-的详细介绍,包括原装发那科系列A20B-的价格、型号、图片、厂家等信息!
发那科伺服变频器总销售上海仁熙实业公司专业从事安川等国际知名品牌多年 有着丰富经验良好渠道
在国内外 一致受到顾客好评 欢迎来电咨询
上海仁熙实业有限公司
黎明 商务经理欢迎来电咨询
电话:021-...
商机库包括所有采购、招标信息的汇总
与原装发那科系列A20B-相关的产品信息
原装发那科系列A20B-产品相关搜索
最新伺服系统产品
按排行字母分类:
我需要采购伺服系统,请供应商联系我....
马可波罗&&全心服务
咨询产品:
请输入采购联系人姓名
联系电话:
便于供应商及时联系您
便于商机和产品订阅
采购身份:
提示:请不要轻易向对方账户进行汇款,谨防上当!
马可波罗建议您选择带有“订”字标识的订单通认证商家,以享受更优质的产品资源和服务保障。
采购数量:
期望价格:
咨询内容:
允许其它同类产品供应商联系我
马可金融——专供中小企业订单旺季备货周转,如有资金需求1 米20 平米1 1
1. 刚性攻丝
主轴控制回路为位置闭环控制,主轴电机的旋转与攻丝轴(Z轴)进给完全同步,从而实现高速高精度攻丝。
2. 复合加工循环
复合加工循环可用简单指令生成一系列的切削路径。比如定义了工件的最终轮廓,可以自动生成多次粗车的刀具路径,简化了车床编程。
3. 圆柱插补
适用于切削圆柱上的槽,能够按照圆柱表面的展开图进行编程。
4. 直接尺寸编程
可直接指定诸如直线的倾角、倒角值、转角半径值等尺寸,这些尺寸在零件图上指定,这样能简化部件加工程序的编程。
5. 记忆型螺距误差补偿 可对丝杠螺距误差等机械系统中的误差进行补偿,补偿数据以参数的形式存储在CNC的存储器中。
6. CNC内装PMC编程功能
PMC对机床和外部设备进行程序控制
7. 随机存储模块
MTB(机床厂)可在CNC上直接改变PMC程序和宏执行器程序。由于使用的是闪存芯片,故无需专用的RAM写入器或PMC的调试RAM。
中文名FANUC系统
特 & &点 刚性攻丝
系统组成图6 系统硬件
数控车床确定加工方案的原则
1. 刚性攻丝
主轴控制回路为位置闭环控制,主轴电机的旋转与攻丝轴(Z轴)进给完全同步,从而实现高速高精度攻丝。
2. 复合加工循环
复合加工循环可用简单指令生成一系列的切削路径。比如定义了工件的最终轮廓,可以自动生成多次粗车的刀具路径,简化了车床编程。
3. 圆柱插补
适用于切削圆柱上的槽,能够按照圆柱表面的展开图进行编程。
4. 直接尺寸编程
可直接指定诸如直线的倾角、倒角值、转角半径值等尺寸,这些尺寸在零件图上指定,这样能简化部件加工程序的编程。
5. 记忆型螺距误差补偿 可对丝杠螺距误差等机械系统中的误差进行补偿,补偿数据以参数的形式存储在CNC的存储器中。
6. CNC内装PMC编程功能
PMC对机床和外部设备进行程序控制
7. 随机存储模块
MTB(机床厂)可在CNC上直接改变PMC程序和宏执行器程序。由于使用的是闪存芯片,故无需专用的RAM写入器或PMC的调试RAM。
8. 显示装置
1. 系统构成
图6 系统硬件概要
图6从总体上描述了系统板上应该连接的硬件和应具有的功能。
图7 FANUC 0i系列控制单元构成及连接
图7所表示的是FANUC0i控制单元及其所要连接的部件示意图,每一个文字方框中表示的部件,都按照图中所列的位置(插座、插槽)与系统相连接。具体的连接方式、方法请参照FANUC连接说明书(硬件)的各章节。
2. 系统连线
系统综合连接图
系统的综合连接详图中标示了系统板上的插槽名以及每一个插槽所连接的部件。
3. 系统构成
主轴电动机的控制有两种接口;模拟和数字(串行传送)输出。模拟接口需用其他公司的变频器及电动机。
(1) 模拟主轴接口
(2) 串行主轴接口
4. 数字伺服
伺服的连接分A型和B型,由伺服放大器上的一个短接棒控制。A型连接是将位置反馈线接到cNc系统,B型连接是将其接到伺服放大器。0i和近期开发的系统用B型。o系统大多数用A型。两种接法不能任意使用,与伺服软件有关。连接时最后的放大器JxlB需插上FANUC (提供的短接插头,如果遗忘会出现#401报警.另外,荐选用一个伺服放大器控制两个电动机,应将大电动机电抠接在M端子上,小电动机接在L端子上.否则电动机运行时会听到不正常的嗡声。
数控车床图标
数控车床图标
数控车床编程如何确定加工方案
(一)确定加工方案的原则
加工方案又称工艺方案,数控机床的加工方案包括制定工序、工步及走刀路线等内容。
在数控机床加工过程中,由于加工对象复杂多样,特别是轮廓曲线的形状及位置千变万化,加上材料不同、批量不同等多方面因素的影响,在对具体零件制定加工方案时,应该进行具体分析和区别对待,灵活处理。只有这样,才能使所制定的加工方案合理,从而达到质量优、效率高和成本低的目的。
制定加工方案的一般原则为:先粗后精,先近后远,先内后外,程序段最少,走刀路线最短以及特殊情况特殊处理。
(1)先粗后精
为了提高生产效率并保证零件的精加工质量,在切削加工时,应先安排粗加工工序,在较短的时间内,将精加工前大量的加工余量(如图3-4中的虚线内所示部分)去掉,同时尽量满足精加工的余量均匀性要求。
当粗加工工序安排完后,应接着安排换刀后进行的半精加工和精加工。其中,安排半精加工的目的是,当粗加工后所留余量的均匀性满足不了精加工要求时,则可安排半精加工作为过渡性工序,以便使精加工余量小而均匀。
在安排可以一刀或多刀进行的精加工工序时,其零件的最终轮廓应由最后一刀连续加工而成。这时,加工刀具的进退刀位置要考虑妥当,尽量不要在连续的轮廓中安排切人和切出或换刀及停顿,以免因切削力突然变化而造成弹性变形,致使光滑连接轮廓上产生表面划伤、形状突变或滞留刀痕等疵病。
(2)先近后远
这里所说的远与近,是按加工部位相对于对刀点的距离大小而言的。在一般情况下,特别是在粗加工时,通常安排离对刀点近的部位先加工,离对刀点远的部位后加工,以便缩短刀具移动距离,减少空行程时间。对于车削加工,先近后远有利于保持毛坯件或半成品件的刚性,改善其切削条件。
(3)先内后外
对既要加工内表面(内型、腔),又要加工外表面的零件,在制定其加工方案时,通常应安排先加工内型和内腔,后加工外表面。这是因为控制内表面的尺寸和形状较困难,刀具刚性相应较差,刀尖(刃)的耐用度易受切削热影响而降低,以及在加工中清除切屑较困难等。
(4)走刀路线最短
确定走刀路线的工作重点,主要用于确定粗加工及空行程的走刀路线,因精加工切削过程的走刀路线基本上都是沿其零件轮廓顺序进行的。
走刀路线泛指刀具从对刀点(或机床固定原点)开始运动起,直至返回该点并结束加工程序所经过的路径,包括切削加工的路径及刀具引入、切出等非切削空行程。
在保证加工质量的前提下,使加工程序具有最短的走刀路线,不仅可以节省整个加工过程的执行时间,还能减少一些不必要的刀具消耗及机床进给机构滑动部件的磨损等。
优化工艺方案除了依靠大量的实践经验外,还应善于分析,必要时可辅以一些简单计算。
上述原则并不是一成不变的,对于某些特殊情况,则需要采取灵活可变的方案。如有的工件就必须先精加工后粗加工,才能保证其加工精度与质量。这些都有赖于编程者实际加工经验的不断积累与学习。
(二)加工路线与加工余量的关系
在数控车床还未达到普及使用的条件下,一般应把毛坯件上过多的余量,特别是含有锻、铸硬皮层的余量安排在普通车床上加工。如必须用数控车床加工时,则要注意程序的灵活安排。安排一些子程序对余量过多的部位先作一定的切削加工。
(1)对大余量毛坯进行阶梯切削时的加工路线
(2)分层切削时刀具的终止位置
(三)车螺纹时的主轴转速
数控车床加工螺纹时,因其传动链的改变,原则上其转速只要能保证主轴每转一周时,刀具沿主进给轴(多为Z轴)方向位移一个螺距即可,不应受到限制。但数控车床加工螺纹时,会受到以下几方面的影响:
(1)螺纹加工程序段中指令的螺距(导程)值,相当于以进给量(mm/r)表示的进给速度F,如果将机床的主轴转速选择过高,其换算后的进给速度(mm/min)则必定大大超过正常值;
(2)刀具在其位移的始/终,都将受到伺服驱动系统升/降频率和数控装置插补运算速度的约束,由于升/降频特性满足不了加工需要等原因,则可能因主进给运动产生出的&超前&和&滞后&而导致部分螺牙的螺距不符合要求;
(3)车削螺纹必须通过主轴的同步运行功能而实现,即车削螺纹需要有主轴脉冲发生器(编码器)。当其主轴转速选择过高,通过编码器发出的定位脉冲(即主轴每转一周时所发出的一个基准脉冲信号)将可能因&过冲&(特别是当编码器的质量不稳定时)而导致工件螺纹产生乱扣。
因此,车螺纹时,主轴转速的确定应遵循以下几个原则:
(1)在保证生产效率和正常切削的情况下,宜选择较低的主轴转速;
(2)当螺纹加工程序段中的导入长度&1和切出长度&2(如图所示)考虑比较充裕,即螺纹进给距离超过图样上规定螺纹的长度较大时,可选择适当高一些的主轴转速;
(3)当编码器所规定的允许工作转速超过机床所规定主轴的最大转速时,则可选择尽量高一些的主轴转速;
(4)通常情况下,车螺纹时的主轴转速(n螺)应按其机床或数控系统说明书中规定的计算式进行确定,其计算式多为:
n螺&n允/L(r/min) 式中n允&编码器允许的最高工作转速(r/min);
L&工件螺纹的螺距(或导程,mm)。
FANUC 0-TD系统
G 代码命令
代码组及其含义&模态代码& 和 &一般& 代码&形式代码& 的功能在它被执行后会继续维持,而 &一般代码& 仅仅在收到该命令时起作用。定义移动的代码通常是&模态代码&,像直线、圆弧和循环代码。反之,像原点返回代码就叫&一般代码&。每一个代码都归属其各自的代码组。在&模态代码&里,当前的代码会被加载的同组代码替换。
G代码 组别 解释
G00 定位 (快速移动)
G01 直线切削
G02 顺时针切圆弧 (CW,顺时钟)
G03 逆时针切圆弧 (CCW,逆时钟)
G04 暂停 (Dwell)
G09 停于精确的位置
G20 英制输入
G21 公制输入
G22 内部行程限位 有效
G23 内部行程限位 无效
G27 检查参考点返回
G28 参考点返回
G29 从参考点返回
G30 回到第二参考点
G32 切螺纹
G40 取消刀尖半径偏置
G41 刀尖半径偏置 (左侧)
G42 刀尖半径偏置 (右侧)
G50 修改工件坐标;设置主轴最大的 RPM
G52 设置局部坐标系
G53 选择机床坐标系
G70 精加工循环
G71 内外径粗切循环
G72 台阶粗切循环
G73 成形重复循环
G74 Z 向步进钻削
G75 X 向切槽
G76 切螺纹循环
G80 取消固定循环
G83 钻孔循环
G84 攻丝循环
G85 正面镗孔循环
G87 侧面钻孔循环
G88 侧面攻丝循环
G89 侧面镗孔循环
G90 (内外直径)切削循环
G92 切螺纹循环
G94 (台阶) 切削循环
G96 12 恒线速度控制
G97 恒线速度控制取消
G98 每分钟进给率
G99 每转进给率
1. 格式 G00 X_ Z_ 这个命令把刀具从当前位置移动到命令指定的位置 (在绝对坐标方式下), 或者移动到某个距离处 (在增量坐标方式下)。 2. 非直线切削形式的定位 我们的定义是:采用独立的快速移动速率来决定每一个轴的位置。刀具路径不是直线,根据到达的顺序,机器轴依次停止在命令指定的位置。 3. 直线定位 刀具路径类似直线切削(G01) 那样,以最短的时间(不超过每一个轴快速移动速率)定位于要求的位置。 4. 举例 N10 G0 X100 Z65
G01 直线插补
1. 格式 G01 X(U)_ Z(W)_ F_ ;直线插补以直线方式和命令给定的移动速率从当前位置移动到命令位置。X, Z: 要求移动到的位置的绝对坐标值。U,W: 要求移动到的位置的增量坐标值。
2. 举例① 绝对坐标程序 G01 X50. Z75. F0.2 ;X100.; ② 增量坐标程序G01 U0.0 W-75. F0.2 ;U50.
圆弧插补 (G02, G03)
1. 格式 G02(G03) X(U)__Z(W)__I__K__F__ ;G02(G03) X(U)__Z(W)__R__F__ ;
G02 & 顺时钟 (CW)G03 & 逆时钟 (CCW)X, Z &在坐标系里的终点U, W & 起点与终点之间的距离I, K & 从起点到中心点的矢量 (半径值)R & 圆弧范围 (最大180 度)。2. 举例① 绝对坐标系程序G02 X100. Z90. I50. K0. F0.2或G02 X100. Z90. R50. F02;② 增量坐标系程序G02 U20. W-30. I50. K0. F0.2;或G02 U20. W-30. R50. F0.2;
第二原点返回 (G30)
坐标系能够用第二原点功能来设置。 1. 用参数 (a, b) 设置刀具起点的坐标值。点 &a& 和 &b& 是机床原点与起刀点之间的距离。 2. 在编程时用 G30 命令代替 G50 设置坐标系。 3. 在执行了第一原点返回之后,不论刀具实际位置在那里,碰到这个命令时刀具便移到第二原点。 4. 更换刀具也是在第二原点进行的。
切螺纹 (G32)
1. 格式 G32 X(U)__Z(W)__F__ ; G32 X(U)__Z(W)__E__ ; F &螺纹导程设置 E &螺距 (毫米) 在编制切螺纹程序时应当带主轴转速RPM 均匀控制的功能 (G97),并且要考虑螺纹部分的某些特性。在螺纹切削方式下移动速率控制和主轴速率控制功能将被忽略。而且在送进保持按钮起作用时,其移动进程在完成一个切削循环后就停止了。 2. 举例 G00 X29.4; (1循环切削) G32 Z-23. F0.2; G00 X32; Z4.; X29.;(2循环切削) G32 Z-23. F0.2; G00 X32.; Z4. 刀具直径偏置功能 (G40/G41/G42)
1. 格式 G41 X_ Z_;G42 X_ Z_;
在刀具刃是尖利时,切削进程按照程序指定的形状执行不会发生问题。不过,真实的刀具刃是由圆弧构成的 (刀尖半径) 就像上图所示,在圆弧插补和攻螺纹的情况下刀尖半径会带来误差。2. 偏置功能
命令 切削位置 刀具路径
G40 取消 刀具按程序路径的移动
G41 右侧 刀具从程序路径左侧移动
G42 左侧 刀具从程序路径右侧移动
补偿的原则取决于刀尖圆弧中心的动向,它总是与切削表面法向里的半径矢量不重合。因此,补偿的基准点是刀尖中心。通常,刀具长度和刀尖半径的补偿是按一个假想的刀刃为基准,因此为测量带来一些困难。把这个原则用于刀具补偿,应当分别以 X 和 Z 的基准点来测量刀具长度刀尖半径 R,以及用于假想刀尖半径补偿所需的刀尖形式数 (0-9)。这些内容应当事前输入刀具偏置文件。
&刀尖半径偏置& 应当用 G00 或者 G01功能来下达命令或取消。不论这个命令是不是带圆弧插补, 刀不会正确移动,导致它逐渐偏离所执行的路径。因此,刀尖半径偏置的命令应当在切削进程启动之前完成; 并且能够防止从工件外部起刀带来的过切现象。反之,要在切削进程之后用移动命令来执行偏置的取消过
工件坐标系选择(G54-G59)
1. 格式 G54 X_ Z_; 2. 功能 通过使用 G54 & G59 命令,来将机床坐标系的一个任意点 (工件原点偏移值) 赋予 1221 & 1226 的参数,并设置工件坐标系(1-6)。该参数与 G 代码要相对应如下: 工件坐标系 1 (G54) ---工件原点返回偏移值---参数 1221 工件坐标系 2 (G55) ---工件原点返回偏移值---参数 1222 工件坐标系 3 (G56) ---工件原点返回偏移值---参数 1223 工件坐标系 4 (G57) ---工件原点返回偏移值---参数 1224 工件坐标系 5 (G58) ---工件原点返回偏移值---参数 1225 工件坐标系 6 (G59) ---工件原点返回偏移值---参数 1226 在接通电源和完成了原点返回后,系统自动选择工件坐标系 1 (G54) 。在有 &模态&命令对这些坐标做出改变之前,它们将保持其有效性。 除了这些设置步骤外,系统中还有一参数可立刻变更G54~G59 的参数。工件外部的原点偏置值能够用 1220 号参数来传递。
精加工循环(G70)
1. 格式 G70 P(ns) Q(nf) ns:精加工形状程序的第一个段号。 nf:精加工形状程序的最后一个段号 2. 功能 用G71、G72或G73粗车削后,G70精车削。
外园粗车固定循环(G71)
1. 格式 G71U(△d)R(e)G71P(ns)Q(nf)U(△u)W(△w)F(f)S(s)T(t)N(ns)&&&&&.F__从序号ns至nf的程序段,指定A及B间的移动指令。.S__.T__N(nf)&&△d:切削深度(半径指定)不指定正负符号。切削方向依照AA&的方向决定,在另一个值指定前不会改变。FANUC系统参数(NO.0717)指定。e:退刀行程本指定是状态指定,在另一个值指定前不会改变。FANUC系统参数(NO.0718)指定。ns:精加工形状程序的第一个段号。nf:精加工形状程序的最后一个段号。△u:X方向精加工预留量的距离及方向。(直径/半径)△w: Z方向精加工预留量的距离及方向。
2. 功能如果在下图用程序决定A至A&至B的精加工形状,用△d(切削深度)车掉指定的区域,留精加工预留量△u/2及△w。
端面车削固定循环(G72)
1. 格式 G72W(△d)R(e) G72P(ns)Q(nf)U(△u)W(△w)F(f)S(s)T(t) △t,e,ns,nf, △u, △w,f,s及t的含义与G71相同。 2. 功能 如下图所示,除了是平行于X轴外,本循环与G71相同。
成型加工复式循环(G73)
1. 格式 G73U(△i)W(△k)R(d)G73P(ns)Q(nf)U(△u)W(△w)F(f)S(s)T(t)N(ns)&&&&&&&沿A A& B的程序段号N(nf)&&&△i:X轴方向退刀距离(半径指定), FANUC系统参数(NO.0719)指定。△k: Z轴方向退刀距离(半径指定), FANUC系统参数(NO.0720)指定。d:分割次数这个值与粗加工重复次数相同,FANUC系统参数(NO.0719)指定。ns: 精加工形状程序的第一个段号。nf:精加工形状程序的最后一个段号。△u:X方向精加工预留量的距离及方向。(直径/半径)△w: Z方向精加工预留量的距离及方向。
2. 功能本功能用于重复切削一个逐渐变换的固定形式,用本循环,可有效的切削一个用粗加工段造或铸造等方式已经加工成型的工件。
端面啄式钻孔循环(G74)
1. 格式 G74 R(e); G74 X(u) Z(w) P(△i) Q(△k) R(△d) F(f) e:后退量 本指定是状态指定,在另一个值指定前不会改变。FANUC系统参数(NO.0722)指定。 x:B点的X坐标 u:从a至b增量 z:c点的Z坐标 w:从A至C增量 △i:X方向的移动量 △k:Z方向的移动量 △d:在切削底部的刀具退刀量。△d的符号一定是(+)。但是,如果X(U)及△I省略,可用所要的正负符号指定刀具退刀量。 f:进给率: 2. 功能 如下图所示在本循环可处理断削,如果省略X(U)及P,结果只在Z轴操作,用于钻孔。
外经/内径啄式钻孔循环(G75)
1. 格式 G75 R(e); G75 X(u) Z(w) P(△i) Q(△k) R(△d) F(f) 2. 功能 以下指令操作如下图所示,除X用Z代替外与G74相同,在本循环可处理断削,可在X轴割槽及X轴啄式钻孔。
螺纹切削循环(G76)
1. 格式 G76 P(m)(r)(a) Q(△dmin) R(d)G76 X(u) Z(w) R(i) P(k) Q(△d) F(f)m:精加工重复次数(1至99)本指定是状态指定,在另一个值指定前不会改变。FANUC系统参数(NO.0723)指定。r:到角量本指定是状态指定,在另一个值指定前不会改变。FANUC系统参数(NO.0109)指定。a:刀尖角度:可选择80度、60度、55度、30度、29度、0度,用2位数指定。本指定是状态指定,在另一个值指定前不会改变。FANUC系统参数(NO.0724)指定。如:P(02/m、12/r、60/a)△dmin:最小切削深度本指定是状态指定,在另一个值指定前不会改变。FANUC系统参数(NO.0726)指定。i:螺纹部分的半径差如果i=0,可作一般直线螺纹切削。k:螺纹高度这个值在X轴方向用半径值指定。△d:第一次的切削深度(半径值)l:螺纹导程(与G32)
2. 功能螺纹切削循环。
内外直径的切削循环(G90)
1. 格式 直线切削循环:G90 X(U)___Z(W)___F___ ;按开关进入单一程序块方式,操作完成如图所示 1&2&3&4 路径的循环操作。U 和 W 的正负号 (+/-) 在增量坐标程序里是根据1和2的方向改变的。锥体切削循环:G90 X(U)___Z(W)___R___ F___ ;必须指定锥体的 &R& 值。切削功能的用法与直线切削循环类似。
2. 功能外园切削循环。1. U<0, W<0, R0, W03. U<0, W04. U>0, W<0, R<0
切削螺纹循环 (G92)
1. 格式 直螺纹切削循环: G92 X(U)___Z(W)___F___ ; 螺纹范围和主轴 RPM 稳定控制 (G97) 类似于 G32 (切螺纹)。在这个螺纹切削循环里,切螺纹的退刀有可能如 [图 9-9] 操作;倒角长度根据所指派的参数在0.1L~ 12.7L的范围里设置为 0.1L 个单位。 锥螺纹切削循环: G92 X(U)___Z(W)___R___F___ ; 2. 功能 切削螺纹循环
台阶切削循环 (G94)
1. 格式 平台阶切削循环: G94 X(U)___Z(W)___F___ ; 锥台阶切削循环: G94 X(U)___Z(W)___R___ F___ ; 2. 功能 台阶切削 线速度控制 (G96, G97)
NC车床用调整步幅和修改 RPM 的方法让速率划分成,如低速和高速区;在每一个区内的速率可以自由改变。 G96 的功能是执行线速度控制,并且只通过改变RPM 来控制相应的工件直径变化时维持稳定的切削速率。 G97 的功能是取消线速度控制,并且仅仅控制 RPM 的稳定。
设置位移量 (G98/G99)
切削位移能够用 G98 代码来指派每分钟的位移(毫米/分),或者用 G99 代码来指派每转位移(毫米/转);这里 G99 的每转位移在 NC 车床里是用于编程的。 每分钟的移动速率 (毫米/分) = 每转位移速率 (毫米/转) x 主轴 RPM
轴类零件综合车削加工&&数控车床编程实例40
编制图所示零件的加工程序。工艺条件:工件材质为45#钢,或铝;毛坯为直径&P54mm,长200mm的棒料;刀具选用:1号端面刀加工工件端面,2号端面外圆刀粗加工工件轮廓,3号端面外圆刀精加工工件轮廓,4号外圆螺纹刀加工导程为3mm,螺距为1mm 的三头螺纹。
N10 G90 G54 T0101 (设立工件坐标系,,确定其坐标系,换一号端面刀,取1号刀补)
N20 M03 S500 (主轴以500r/min正转)
N30 G00 X100 Z80 (到程序起点或换刀点位置)
N40 G00 X60 Z5 (到简单端面循环起点位置)
N50 G81 X0 Z1.5 F100 (简单端面循环,加工过长毛坯)
N60 G81 X0 Z0 (简单端面循环加工,加工过长毛坯)
N70 G00 X100 Z80 (到程序起点或换刀点位置)
N80 T0202 (换二号外圆粗加工刀,取2号刀补)
N90 G00 X60 Z3 (到简单外圆循环起点位置)
N100 G80 X52.6 Z-133 F100 (简单外圆循环,加工过大毛坯直径)
N110 G01 X54 (到复合循环起点位置)
N120 G71 U1 R1 P16 Q32 E0.3(有凹槽外径粗切复合循环加工)
N130 G00 X100 Z80 (粗加工后,到换刀点位置)
N140 T0303 (换三号外圆精加工刀, 取3号刀补)
N150 G00 G42 X70 Z3 (到精加工始点,加入刀尖园弧半径补偿)
N160 G01 X10 F100 (精加工轮廓开始,到倒角延长线处)
N170 X19.95 Z-2 (精加工倒2&45&角)
N180 Z-33 (精加工螺纹外径)
N190 G01 X30 (精加工Z33处端面)
N200 Z-43 (精加工&P30外圆)
N210 G03 X42 Z-49 R6 (精加工R6圆弧)
N220 G01 Z-53 (精加工&P42外圆)
N230 X36 Z-65 (精加工下切锥面)
N240 Z-73 (精加工&P36槽径)
N250 G02 X40 Z-75 R2 (精加工R2过渡圆弧)
N260 G01 X44 (精加工Z75处端面)
N270 X46 Z-76 (精加工倒1&45&角)
N280 Z-84 (精加工&P46槽径)
N290 G02 Z-113 R25 (精加工R25圆弧凹槽)
N300 G03 X52 Z-122 R15 (精加工R15圆弧)
N310 G01 Z-133 (精加工&P52外圆)
N320 G01 X54 (退出已加工表面,精加工轮廓结束)
N330 G00 G40 X100 Z80 (取消半径补偿,返回换刀点位置)
N340 M05 (主轴停)
N350 T0404 (换四号螺纹刀,取4号刀刀补)
N360 M03 S200 (主轴以200r/min正转)
N370 G00 X30 Z5 (到简单螺纹循环起点位置)
N380 G00 X19.3
N390 G32Z-20E1C2P120F3(加工两头螺纹,吃刀深0.7)
N400 G00 X30
N420 X18.9
N430 G32Z-20E1C2P120F3(加工两头螺纹,吃刀深0.4)
N440 G00 X30
N460 X18.7
N470 G32Z-20E1C2P120F3(加工两头螺纹,吃刀深0.2)
N480 G00 X30
N500 X18.7
N510 G32Z-20E1C2P120F3(光整加工螺纹)
N520 G00 X30
N540 G76C2R-3E1A60X18.7Z-20 K0.65U0.1V0.1Q0.6P240F3 (螺纹切削精加工)
N550 G00 X100 Z80 (返回程序起点位置)
N560 M05 (主轴停转)
N570 M30 (主程序结束并复位)
1.子程序的定义
在编制加工程序中,有时会遇到一组程序段在一个程序中多次出现,或者在几个程序中都要使用它。这个典型的加工程序可以做成固定程序,并单独加以命名,这组程序段就称为子程序。
2.使用于程序的目的和作用
使用于程序可以减少不必要的编程重复,从而达到减化编程的目的。其作用相当于一个固定循环。
3. 子程序的调用
在主程序中,调用于程序的指令是一个程序段,其格式随具体的数控系统而定,FANUC&6T系统子程序调用格式为
M98 P&&&L&&&
式中 M98--子程序调用字;
p--子程序号;
L--子程序重复调用次数。
由此可见,子程序由程序调用字、子程序号和调用次数组成。
4.子程序的返回
子程序返回主程序用指令M99,它表示子程序运行结束,请返回到主程序。
5.子程序的嵌套
子程序调用下一级子程序称为嵌套。上一级子程序与下一级子程序的关系,与主程序与第一层子程序的关系相同。子程序可以嵌套多少层由具体的数控系统决定,在FANUC&6T系统中,只能有两次嵌套。
(1) Y上L期裼么蟀褰Y,但在新的a品中已裼媚K化Y。
  (2) 裼SLSI,以提高集成度、可靠性,p小we和降低成本。
  (3) a品霉V。每一CNCb置上可配多N上控制w,m用於多NC床。
  (4) 不裼眯鹿に、新技g。如l面安b技gSMT、多佑⊙u路板、光ЮwS|等。
  (5) CNCb置wep小,裼妹姘逖b配式、妊b式PMC(可C床控制器)。
  (6) 在插a、加p速成、a、自泳獭D形@示、通信、控制和喾矫娌嘣黾有碌墓&埽&#65533;
  插a功能:除直、A弧、螺旋插a外,有假想S插a、O其坐瞬逖a、AF面插a、指岛挡逖a、l插a等。
  切削Mo的自蛹p速功能:除插a後直加p速,插a前加p速。
  a功能:除螺距`差a、z杠反向g隙a之外,有坡度a性度a以及各新的刀具a功能。
  故障喙&埽裼萌斯ぶ腔郏?到y具有推理w,以知R楦檎夜收显颉
  (7) CNCb置面向用糸_放的功能。以用籼赜巨集程式、MMC等功能F。
  (8) 支持多NZ言@示。如日、英、德、h、意、法、荷、西班牙、瑞典、挪威、丹Z等。
  (9) 溆卸喾N外O。如FANUC PPR, FANUC FA Card,FANUC FLOPY CASSETE,FANUC PROGRAM FILE Mate等。
  (10) 已推出MAP(u造自踊fh)介面,使CNC通^介面Fc上一X通信。
  (11) F已形成多N版本。
FANUC系y的0系列型分
0D系列: 0&TD 用於床
0&MD 用於床及小型加工中心
0&GCD 用於A柱磨床
0&GSD 用於平面磨床
0&PD 用於_床
0C系y:0&TC 用於普通床、自榆床
0&MC 用於床、床、加工中心
0&GCC 用於取⑼饽ゴ
0&GSC 用於平面磨床
0&TTC 用於p刀架、4S床
POWER MATE 0:用於2S小型床
0i系列:0i&MA 用於加工中心、床
0i&TA 用於床,可控制4S
16i 用於最大8S,6S
18i 用於最大6S,4S
160/18MC 用於加工中心、床、平面磨床
160/18TC 用於床、磨床
160/18DMC 用於加工中心、床、平面磨床的_放式CNC系y
160/180TC 用於床、A柱磨床的_放式CNC系y(1) Y上L期裼么蟀褰Y,但在新的a品中已裼媚K化Y。
  (2) 裼SLSI,以提高集成度、可靠性,p小we和降低成本。
  (3) a品霉V。每一CNCb置上可配多N上控制w,m用於多NC床。
  (4) 不裼眯鹿に、新技g。如l面安b技gSMT、多佑⊙u路板、光ЮwS|等。
  (5) CNCb置wep小,裼妹姘逖b配式、妊b式PMC(可C床控制器)。
  (6) 在插a、加p速成、a、自泳獭D形@示、通信、控制和喾矫娌嘣黾有碌墓&埽&#65533;
  插a功能:除直、A弧、螺旋插a外,有假想S插a、O其坐瞬逖a、AF面插a、指岛挡逖a、l插a等。
  切削Mo的自蛹p速功能:除插a後直加p速,插a前加p速。
  a功能:除螺距`差a、z杠反向g隙a之外,有坡度a性度a以及各新的刀具a功能。
  故障喙&埽裼萌斯ぶ腔郏?到y具有推理w,以知R楦檎夜收显颉
  (7) CNCb置面向用糸_放的功能。以用籼赜巨集程式、MMC等功能F。
  (8) 支持多NZ言@示。如日、英、德、h、意、法、荷、西班牙、瑞典、挪威、丹Z等。
  (9) 溆卸喾N外O。如FANUC PPR, FANUC FA Card,FANUC FLOPY CASSETE,FANUC PROGRAM FILE Mate等。
  (10) 已推出MAP(u造自踊fh)介面,使CNC通^介面Fc上一X通信。
  (11) F已形成多N版本。
FANUC系y的0系列型分
0D系列: 0&TD 用於床
0&MD 用於床及小型加工中心
0&GCD 用於A柱磨床
0&GSD 用於平面磨床
0&PD 用於_床
0C系y:0&TC 用於普通床、自榆床
0&MC 用於床、床、加工中心
0&GCC 用於取⑼饽ゴ
0&GSC 用於平面磨床
0&TTC 用於p刀架、4S床
POWER MATE 0:用於2S小型床
0i系列:0i&MA 用於加工中心、床
0i&TA 用於床,可控制4S
16i 用於最大8S,6S
18i 用於最大6S,4S
160/18MC 用於加工中心、床、平面磨床
160/18TC 用於床、磨床
160/18DMC 用於加工中心、床、平面磨床的_放式CNC系y
160/180TC 用於床、A柱磨床的_放式CNC系y
¥ 680元/台
暂时没有添加商业伙伴!
联系方式:
址:上海市金山区吕巷镇溪南路86号31幢3342室}

我要回帖

更多关于 发那科报警 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信